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Finite State Machine Concepts

In this section...

“What Is a Finite State Machine?” on page 1-2

“Finite State Machine Representations” on page 1-2

“Stateflow ® Chart Representations” on page 1-3

“Notation” on page 1-3

“Semantics” on page 1-3

“References” on page 1-4

What Is a Finite State Machine?
A Stateflow ® chart is an example of a finite state machine. A finite state
machine is a representation of an event-driven (reactive) system. In an
event-driven system, the system make s a transition from one state (mode) to
another, provided that the condition defining the change is true.

For example, you can use a state machine to represent a car’s automatic
transmission. The transmission has the se operating states: park, reverse,
neutral, drive, and low. As the driver shifts from one position to another,
the system makes a transition from one state to another, for example, from
park to reverse.

Finite State Machine Representations
Traditionally, designers used truth t ables to represent relationships among
the inputs, outputs, and states of a finite state machine. The resulting table
describes the logic necessary to cont rol the behavior of the system under
study. Another approach to designing event-driven systems is to model the
behavior of the system by d escribing it in terms of tra nsitions among states.
The state that is active is determined based on the occurrence of events under
certain conditions. State-transition charts and bubble charts are graphical
representations based on this approach.
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Stateflow ® Chart Representations
A Stateflow chart uses a variant of the finite state machine notation
established by Harel [1]. A chart is a graphical representation of a finite state
machine, where states and transitions form the basic building blocks of the
system. You can also represent stateles s charts (flow graphs). You can include
Stateflow charts as blocks in a Simulink ® model. The collection of Stateflow
blocks in a Simulink model is the Stateflow machine.

A Stateflow chart enables the representation of hierarchy, parallelism, and
history. You can organize complex sys tems by defining a parent/offspring
object structure. For example, you can organize states within other
higher-level states. A system with parallelism can have two or more
orthogonal states active at the same time. You can specify the destination
state of a transition based on historical information. These characteristics go
beyond what state-transition charts and bubble charts provide.

Notation
Notation defines a set of objects and the rules that govern the relationships
between those objects. Stateflow chart notation provides a way to
communicate the design infor mation in a Stateflow chart.

Stateflow chart notation co nsists of the following:

• A set of graphical objects

• A set of nongraphical text-based objects

• Defined relationships between those objects

See Chapter 2, “Stateflow ® Chart Notation”, for detailed information on
Stateflow chart notation.

Semantics
Semantics describe how the notation is interpreted and implemented. A
completed Stateflow chart illustrates how the system will behave. A Stateflow
chart contains actions associated with transitions and states. The semantics
describe the sequence of these actions during chart execution.

1-3



1 Stateflow® Chart Concepts

If you know the semantics, you can design a sound Stateflow chart for code
generation.

For the default semantics, see Chapter 3, “Stateflow ® Chart Semantics”.

References
For more information on finite state machine theory, consult these sources:

[1] Harel, David, “Statecharts: A Vis ual Formalism for Complex Systems,”
Science of Computer Programming 8, 1987, pages 231-274.

[2] Hatley, Derek J., and Imtiaz A. Pirbhai, Strategies for Real-Time System
Specification, Dorset House Publishing Co., Inc., NY, 1988.
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Stateflow ® Charts and Simulink ® Models

In this section...

“The Simulink ® Model and the Stateflow ® Machine” on page 1-5

“Defining Stateflow ® Block Interfaces to Simulink ® Models” on page 1-5

The Simulink ® Model and the Stateflow ® Machine
A Stateflow ® chart functions as a finite state machine within a Simulink ®

model. The Stateflow machine is the collection of Stateflow blocks in a
Simulink model. The Simulink model and the Stateflow machine work
seamlessly together. Running a simulation automatically executes both the
Simulink blocks and the Stateflow charts of the model.

A Simulink model can consist of combinations of Simulink blocks, toolbox
blocks, and Stateflow blocks ( charts ). A Stateflow chart consists of a set
of graphical objects (states, boxes, functions, notes, transitions, connective
junctions, and history junctions) and nongraphical objects (events, data, and
targets).

There is a one-to-one correspondence between the Simulink model and
the Stateflow machine. Each Stateflow block in the Simulink model is
represented by a single Stateflow chart. Each Stateflow machine has its own
object hierarchy. The Stateflow machine is the highest level in the Stateflow
hierarchy. The object hierarchy beneath the Stateflow machine consists
of combinations of graphical and nongraphical objects. See “Stateflow ®

Hierarchy of Objects” on page 1-20.

Defining Stateflow ® Block Interfaces to Simulink ®

Models
Each Stateflow block corresponds to a s ingle Stateflow chart. The Stateflow
block interfaces to its Simulink model. The Stateflow block can interface to
code sources external to the Simulink model (data, events, custom code).

Stateflow charts are event-driven. Events can be local to the Stateflow block
or can be propagated to and from the S imulink model and external code
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sources. Data can be local to the Stateflow block or can be shared with and
passed to the Simulink model a nd to external code sources.

You must define the interface to each Stateflow block. Defining the interface
for a Stateflow block can involve some or all of these tasks:

• Defining the Stateflow block update method

• Defining Output to Simulink events

• Adding and defining nonlocal events a nd nonlocal data wi thin the Stateflow
chart

• Defining relationships with any external sources

In the following example, the Simulink model titled sf_intro_example
consists of a Sine Wave source block, a Scope sink block, and a single Stateflow
block, titled On_off .
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For more information, see “Defining I nput Events” on page 8-10 and Chapter
13, “Defining Interfaces to Simulink ® Models and the MATLAB ® Workspace”.
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Stateflow ® Chart Objects

In this section...

“About Stateflow ® Objects” on page 1-8

“States” on page 1-9

“Transitions” on page 1-11

“Default Transitions” on page 1-12

“Events” on page 1-13

“Data” on page 1-13

“Conditions” on page 1-14

“History Junction” on page 1-14

“Actions” on page 1-15

“Connective Junctions” on page 1-17

All Stateflow ® objects are arranged in a hierarc hy of objects. See “Stateflow ®

Hierarchy of Objects” on page 1-20.

About Stateflow ® Objects
Stateflow charts consist of objects. So me of these objects are graphical, which
you draw in a Stateflow chart. Others a re nongraphical, which you reference
textually in the chart.

The following sample chart displays some key graphical objects.
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Stateflow ® Graphical Objects

States
A state describes a mode of an event-driven system. The activity or inactivity
of the states dynamically change s based on events and conditions.

Every state has a parent. In a Stateflo w chart consisting of a single state,
that state’s parent is the chart itsel f (also called the chart root). You can
place states within other higher-level states. In the preceding figure, StateA1
is a child of StateA .

A state can have its activity history recorded in a history junction. History
provides an efficient means of basing future activity on past activity. See
“History Junction” on page 1-14.
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States have labels that can specify acti ons executed in a sequence based upon
action type. The action types are entry , during , exit , and on. See “Actions”
on page 1-15.

Decomposition defines what a state can contain. You can use two types of
states: exclusive (OR) and parallel (AND) states. Exclusive (OR) states are
used to describe modes that are mutually exclusive. A chart or state that
contains exclusive (OR) states has exclusive decomposition. The following
transmission example has exclusive (OR) states.

An automatic transmission can be set t o either neutral or engaged. In this
example, either the neutral state or the engaged state is active at any one
time. Both cannot be active at the same time.

A chart or state with parallel states has two or more states that can be active
at the same time. A chart or state that contains parallel (AND) states has
parallel decomposition.

Parallel (AND) states are displayed as dashed rectangles. The activity of
each parallel state is essentially independent of other states. In the chart in
Stateflow ® Graphical Objects on page 1-9, StateA2 has parallel (AND) state
decomposition. Its states, StateA2a and StateA2b, are parallel (AND) states.

This Stateflow chart has parallel superstate decomposition.
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In this exa mple, the transmission, heating, and light systems are parallel
subsystems in a car. They are active at the same time and are physically
independ ent of each other. There are many other parallel components in a car,
such as th e braking and windshield wiper subsystems.

Transiti ons
A transition is a graphical object that, in most cases, links one object to
another. One end of a transition is attached to a source object and the other
end to a destination object. The source is where the transition begins and
the destination is where the transition ends. A transition label describes
the circ umstances under which the system moves from one state to another.
The occurrence of an event causes a transition to take place. In the chart
in Stat eflow® Graphical Objects on page 1-9, the transition from StateA1
to Stat eA2 is labeled with the event transitionA1_A2 that triggers the
transi tion to occur.

Consider again the automatic t ransmission system. clutch_engaged is the
event required to trigger the transition from neutral to engaged .
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Default Transitions
Default transitions specify which exclusive (OR) state is to be active when
there is ambiguity between two or more exclusive (OR) states at the same
level in the hierarchy.

For example, in the chart in Stateflow ® Graphical Objects on page 1-9, the
default transition to StateA1 defines whether StateA1 or StateA2 should be
active when State A becomes active. In this case, when StateA is active, by
default StateA1 is also active.

In the following Lights subsystem, the default transition to the Lights .Off
substate indicates that when the Lights superstate becomes active, the Off
substate becomes active by default.
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Note History junctions override default transition paths in superstates with
exclusive (OR) decomposition. In parallel (AND) states, a default transition
must always be present to indicate which of its exclusive (OR) states is active
when the parallel state becomes active.

Events
Events drive the Stateflow chart execution but are nongraphical objects and
are thus not represented directly in a Stateflow chart. You must define all
events that affect the chart. The occu rrence of an event causes the status
of the states in the chart to be evaluated. The broadcast of an event can
trigger a transition to occur or can trigger an action to be executed. Events
are broadcast in a top-dow n manner starting from the event’s parent in the
hierarchy.

Events are created and modified using the Model Explorer, and they can exist
at any level in the hierarchy. Events have properties such as a scope . The
scope defines whether the event is

• Local to the Stateflow chart

• An input to the chart from its Simulink ® model

• An output from the chart to its Simulink model

• Exported to a (code) destination exte rnal to the chart and Simulink model

• Imported from a code source extern al to the chart and Simulink model

Data
Data objects are used to store numerical values for reference in the Stateflow
chart. They are nongraphical objects and are thus not represented directly
in a Stateflow chart.

You create and modify data objects for St ateflow charts in the Model Explorer.
Data objects have a property called scope that defines whether the data
object is

• Local to the Stateflow chart
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• An input to the chart from its Simulink model

• An output from the chart to its Simulink model

• Nonpersistent temporary data

• Defined in the MATLAB ® workspace

• A constant

• Exported to a (code) destination exte rnal to the chart and Simulink model

• Imported from a code source extern al to the chart and Simulink model

Conditions
A condition is a Boolean expression specifying that a transition occurs, given
that the specified expression is true . In the component summary Stateflow
chart, [condition1] represents a Boolean expression that must be true for
the transition to occur.

In the automatic transmission system, the transition from first to second
occurs if the transition condition [ speed > threshold] is true.

History Junction
A history junction records the most recently active state of a chart or
superstate.
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If a superstate with exclusive (OR) decomposition has a history junction, the
destination substate is defined to be the substate that was most recently
visited. A history juncti on applies to the level of the hierarchy in which
it appears, and it overrides any default transitions. In the component
summary Stateflow chart, the history junction in StateA1 indicates that
when a transition to StateA1 occurs, the substate that becomes active
(StateA1a , StateA1b , or StateA1c ) is based on which of those substates was
most recently active.

In the automatic transmission syst em, history indicates that when
clutch_engaged causes a transition from neutral to the engaged superstate,
the substate that becomes active, either first or second , is based on which of
those substates was most recently active.

Actions
Actions take place as part of Stateflow ch art execution. The action can be
executed either as part of a transition from one state to another or based on
the activity status of a state.

Transitions ending in a state can have condition actions and transition
actions, as shown in the following example:
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In the chart in Stateflow ® Graphical Objects on page 1-9, the transition
segment from StateA1b to the connective junct ion is labeled with the
condition action func1() and the transition action func2() . The semantics of
how and why actions take place are discussed throughout the examples listed
in “Semantic Examples” on page 3-52.

States can have entry , during , exit , and on event_name actions. For
example,

Action language defines the types of actions you can specify and their
associated notations. An action can b e a function call, the broadcast of an
event, the assignment of a value to a variable, and so on.
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A Stateflow chart supports both Mealy and Moore modeling paradigms
for finite state machines. In the Mealy model, actions are associated with
transitions, whereas in the Moore model , they are associated with states. For
more information, see Chapter 5, “Building Mealy and Moore Charts”.

A Stateflow chart supports state action s, transition actions, and condition
actions. For more information, see the following:

• “State Labels” on page 2-8 — Describes action language for states, which
is included in the label for a state.

• “Transition Label Notation” on page 2 -14 — Describes action language for
transitions which is included in the label of a transition.

• “Labeling States” on page 4-11 — Shows you to label states with its name
and actions in the Stateflow Editor.

• “Labeling Transitions” on page 4-18 — Shows you how to label transitions
with actions in the Stateflow Editor.

Connective Junctions
Connective junctions are decision points in the system. A connective
junction is a graphical object that simpli fies Stateflow chart representations
and facilitates generation of effici ent code. Connective junctions provide
alternative ways to represent desired system behavior. In the chart in
“Stateflow ® Chart Objects” on page 1-8, the connective junction is used as a
decision point for two transition segments that complete at StateA1c .

Transitions connected to junctions are called transition segments. Transitions,
apart from default transitions, must go state to state. However, once
the transition segments taken comple te a state to state transition, the
accumulation of the transition segment s taken forms a complete transition.

The following example shows how conne ctive junctions (displayed as small
circles) are used to represent the flow of an if-else code structure shown in
accompanying pseudocode.
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This example executes as follows:

1 If condition [c1] is true, condition action a1 is executed and the default
transition to the top junction is taken.

2 The Stateflow chart now considers w hich transition segment to take out
of the top junction (it can take only one). Junctions with conditions have
priority over junctions without conditions, so the transition with the
condition [c2] is considered first.

3 If condition [ c2] is true, action a2 is executed and the transition segment
to the bottom junction is taken. Becau se there are no outgoing transition
segments from the bottom junction, the chart is finished executing.

4 If condition [c2] is false, the empty transition segment on the right is
taken (because it has no condition at all).

5 If condition [c3] is true, condition action a3 is executed and the transition
segment from the middle to the bottom junction is taken. Because there
are no outgoing transition segments from the bottom junction, the chart
is finished executing.

6 If condition [c3] is false, execution is finished at the middle junction.

The above steps describe the execution of the example chart for connective
junctions with Stateflow chart semantics. These semantics describe how
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objects in charts relate to each other during execution. See Chapter 3,
“Stateflow ® Chart Semantics”.
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Stateflow ® Hierarchy of Objects

Stateflow ® machines arrange Sta teflow objects in a hierarchy based on
containment. That is, one Stateflow object can contain other Stateflow objects.

��������	
�������

The highest object in Stateflow hierarchy is the Stateflow machine. It is
defined as an object that contains all other Stateflow objects in a Simulink ®

model. This means that the Stateflow machine contains all the Stateflow
charts in a Simulink model. In addition, the Stateflow machine for a model
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can also contain its own data, event, a nd target objects. Only a simulation
target (named sfun ) is added to the Stateflow ma chine by default when the
model is created. All other data, event, and target objects must be added
to the machine.

Similarly, charts can contain state, bo x, function, data, event, transition,
junction, and note events. You use all of these objects to create a Stateflow
chart. Continuing with the Stateflow hierarchy, states can contain all of these
objects as well, including other states. You can represent state hierarchy
with superstates and substates. For e xample, this chart has a superstate
that contains two substates.

In the preceding chart, the engaged superstate contains the first and
second substates. The engaged superstate is the parent in the hierarchy
to the states first and second . When the event clutch_engaged occurs,
the system transitions out of the neutral state to the engaged superstate.
Transitions within the engaged superstate are intenti onally omitted from
this example for simplicity.

A transition out of a superstate implies transitions out of any of its active
substates. Transitions can cross supers tate boundaries to specify a substate
destination. If a substate is made active, its parent superstate is also made
active.
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You can organize complex charts by defining a containment structure. A
hierarchical design usually reduces the number of transitions and produces
neat, manageable charts. To manage graphical objects, use the Stateflow
Editor. To manage nongraphical obj ects, use the Model Explorer or the
Stateflow Editor.
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Exploring a Real-World Stateflow ® Chart Application

In this section...

“About the Applica tion” on page 1-23

“Overview of the "fuel rate con troller" Model” on page 1-23

“Control Logic of the "fuel rate controller" Model” on page 1-27

“Simulating the "fuel rate con troller" Model” on page 1-28

About the Application
The modeling of a fault-tolerant fuel control system demonstrates how a
Stateflow ® chart in a Simulink ® model can be used to model hybrid systems
that contain both continuous dynamics and complex control logic.

Simulink blocks model behavior based on a given sample time. Each loop of
its block diagram is assigned an increment of sample time. Stateflow chart
execution does not consider sample time. Internally, the chart can take many
cycles of execution, which are assume d to take place during the sample time
assigned in a Simulink model.

Overview of the "fuel rate controller" Model
The model described represents a fuel control system for a gasoline engine.
This robust control system reacts to the de tection of individual sensor failures
and is dynamically reconfigured for uninterrupted operation. The mass flow
rate of air pumped from the intake manifold, divided by the fuel rate, which is
injected at the valves, gives the air/fuel ratio. The ideal mixture ratio provides
a good compromise between power, fuel economy, and emissions. A target
air/fuel ratio of 14.6 is assumed in this system.

A sensor (EGO) determines the amount of residual oxygen present in the
exhaust gas. This sensor gives a good indication of the air/fuel ratio and
provides a feedback measurement for c losed-loop control. If the sensor
indicates a high oxygen level, the contr oller increases the fuel rate. If the
sensor detects a fuel-rich mixture (corresponding to a very low level of
residual oxygen), the controller decreases the fuel rate.
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The following figure shows the to p level of the Simulink model ( fuelsys.mdl ).
The model consists of a fuel rate con troller and a subsystem to simulate
engine gas dynamics.

The fuel rate controller uses signals from the system sensors to determine
the fuel rate that gives an ideal mixture. The fuel rate combines with the
actual air flow in the engine gas dynamics model to determine the resulting
mixture ratio as sensed at the exhaust.

To simulate failures in the system, you c an selectively disable each of the four
sensors: throttle angle, speed, exhau st gas (EGO), and manifold absolute
pressure (MAP). These sensors appe ar in the Simulink model as Manual
Switch blocks. You can toggle the positi on of a switch by double-clicking the
icon prior to or during a simulation. Similarly, you can force the failure
condition of a high engine speed by toggling the switch on the far left.

The controller uses the sensor input and feedback signals to adjust the fuel
rate to provide an ideal ratio. The mod el uses four subsystems to implement
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this strategy: control logic, sensor co rrection, airflow cal culation, and fuel
calculation. Under normal operation , the model estimates the airflow rate
and multiplies the estimate by the reciprocal of the desired ratio to give the
fuel rate. Feedback from the oxygen senso r provides a closed-loop adjustment
of the rate estimation to maintain the ideal mixture ratio.

A detaile d explanation of the Simulink blocks of the fault-tolerant control
system is given in Using Simulink and Stateflow in Automotive Applications,
a Simuli nk-Stateflow Technical Examples booklet published by The
MathWor ks, Inc. This section concentrates on the control logic implemented
in a char t, but these key points are crucial to the interaction between
Simuli nk models and Stateflow charts:

• The control logic monitors the input data readings from the sensors.

• The logic determines from these readings the sensors that have failed and
output s a failure state Boolean array as fail_state .

• Given t he current failure state, the logic determines in which fueling mode
the engine should run.

The fue ling mode can be one of these options:
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• Low emissions mode is the normal mode of operation where no sensors
have failed.

• Rich mixture mode occurs when a sensor has failed, to ensure smooth
running of the engine.

• Shutdown mode occurs when more than one sen sor has failed, rendering
the engine inoperable.

The Stateflow chart outputs fueling mode and failure state as fuel_mode
and fail_state , respectively, to the rest of the model, which determines the
fueling calculations.
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Control Logic of the "fuel rate controller" Model
The Stateflow chart that imple ments control logic for the fuelsys model
looks like this:

The chart contains six parallel states with dashed boundaries that represent
concurrent modes of operation.

The four parallel states at the top of the chart correspond to four individual
sensors. Each of these states has a substate that represents the normal or
failing status of that sensor. These substates are mutually exclusive. For
example, if the throttle sensor fai ls then the active substate of the Throttle
state is fail .
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Transitions determine how states can change and can be guarded by
conditions. For example, the active state can change from the normal state
to the fail state when the measurement from the throttle sensor exceeds
max_throt or is below min_throt .

The two parallel states at the bottom consider the status of the four sensors
simultaneously and determine the o verall system operating mode. The Fail
superstate stores the total number of se nsor failures. This state is polled by
the Fueling_Mode state that determines the fueling mode of the engine. If a
single sensor fails, operation continue s but the air/fuel mixture is richer to
allow smoother running at the cost of higher emissions. If more than one
sensor has failed, the engine shuts down as a safety measure, because the
air/fuel ratio cannot be controlled reliably.

Although you can run Stateflow charts asynchronously by injecting events
from a Simulink model, the fueling contr ol logic is polled synchronously at a
rate of 100 Hz. Therefore, the sensors are checked every 1/100 second to see if
they have changed status, and the fu eling mode is adjusted accordingly.

Simulating the "fuel rate controller" Model
On starting the simulation, and assuming no sensors have failed, the
Stateflow chart initializes in the Warmup mode in which the oxygen sensor is
in a warm-up phase.
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If you animate the Stateflow chart, you can see the current state of the system
highlighted on the chart.

After a given time period, defined by o2_t_thresh , the sensor reaches
operating temperature and the system s ettles into the normal mode of
operation, shown above, in which the fueling mode is set to Normal .

As the simulation progresses, the chart wakes up every 0.01 second. The
events and conditions that guard the transitions are evaluated and if a
tran sition is valid, it is taken and an imated on the Stateflow chart.

For example, you can force a transition by switching a sensor to a failure value
on th e top-level Simulink model. The system detects throttle and pressure
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sensor failures when their measured values fall outside nominal ranges. A
manifold vacuum in the absence of a speed signal indicates a speed sensor
failure. The oxygen sensor also has a nominal range for failure conditions but,
because zero is both the minimum signal level and the bottom of the range,
failure can be detected only when the oxygen level exceeds the upper limit.

Flip the Simulink switch for the manifold air pressure (MAP) sensor to the off
position to see this sequence of transitions.

1 Switching the Simulink MAP sensor switch causes a value of zero to be
read by the fuel rate controller.

2 When the chart next wakes up, the transition in the Pressure state from
the normal substate to the fail substate occurs as the reading is now
out of bounds.

3 When a sensor fails, the chart always broadcasts the event Fail.INC , which
makes triggering of global sensor fail ure logic independent of the sensor.

This event causes a second transition from None to One in the Fail
superstate.

4 With the Fail superstate showing one fa ilure, the condition that
guards the transition from the Low_Emissions.Normal state to the
Rich_Mixture.Single_Failure state is now valid. Therefore, the
transition occurs.

5 The data fuel_mode is set to RICH.

1-30



Exploring a Real-World Stateflow® Chart Application

After the transitions in the preceding ste ps occur, the chart appears as follows.
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A second sensor failure causes the Fail superstate to enter the Multi state,
broadcasting an implicit event tha t triggers the transition from the Running
state to the Shutdown state. On entering the Fuel_Disabled superstate, the
Stateflow data fuel_mode is set to DISABLED.

Using Clear Control Logic
The preceding example shows how you can r epresent control logic clearly. For
example, conditions such as in(Fail.None) make the chart easy to read
and the generated code more efficient.

1-32



Exploring a Real-World Stateflow® Chart Application

Modifying the Model
To illustrate how to modify the model, consider the Warmup state in the
Fueling_Mode superstate. By default, fueling is set to the low emissions mode.

Suppose that changing the warm-up fueling mode to a rich mixture is
beneficial. To modify the model, follow these steps:

1 In the Stateflow chart, enlarge the Rich_Mixture state.

2 Move the Warmup state from the Low_Emissions state to the Rich_Mixture
state.

The modified Fueling_Mode superstate should look something like this:
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You can see the results of this change by observing the air/fuel mixture ratio
for the first few seconds of engine opera tion. The left graph shows the air/fuel
ratio for the original system. The right graph shows how the air/fuel ratio
stays low during warm-up, indicating a r ich mixture for the modified system.

1-34



2

Stateflow ® Chart Notation

Overview of Stateflow ® Objects
(p. 2-2)

Introduces graphical and
nongraphical objects that are
organized into a hierarchical
structure

States (p. 2-5) Describes the primary Stateflow ®

chart objects that represent modes
of a system

Transitions (p. 2-12) Describes pathways for a chart or
state to change from one mode (state)
to another

Transition Connections (p. 2-17) How to support different connections
with other Stateflow objects

Default Transitions (p. 2-25) Describes transitions that define
which of several possible states to
enter first for a chart or superstate

Connective Junctions (p. 2-30) Describes decision points between
alternative transition paths

History Junctions (p. 2-37) How to record the most recently
active state of a chart or superstate

Graphical Functions (p. 2-39) How to use functions that are
graphically defined by a flow graph

Boxes (p. 2-41) How to use boxes to group graphical
objects of a chart
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Overview of Stateflow ® Objects

In this section...

“Graphical Objects” on page 2-2

“Nongraphical Objects” on page 2-3

“Naming Stateflow ® Objects” on page 2-4

“For More Information” on page 2-4

Graphical Objects
The following table gives the name of each graphical object in a Stateflow ®

chart, its appearance when drawn in the Stateflow Editor (Notation), and the
toolbar icon to use for drawing the object:

Name Notation Toolbar Icon

State

Transition NA

History Junction

Default Transition

Connective Junction

Truth Table Function
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Name Notation Toolbar Icon

Graphical Function

Embedded MATLAB™
Function

Box

Nongraphical Objects
You can define data, event, and target objects that do not appear graphically
in the Stateflow Editor. However, you can see them in the Model Explorer.
See “Using the Model Explorer with Stateflow ® Objects” on page 20-2.

Data Objects
A Stateflow chart stores and retrieves dat a that it uses to control its execution.
Stateflow data resides in its own work space, but you can also access data that
resides externally in the Simulink ® model or application that embeds the
Stateflow machine. You must define any internal or external data that you
use in the action language of a Stateflow chart. For a full description of data
objects, see Chapter 7, “Defining Data”.

Event Objects
An event is a Stateflow object that can trigger a whole Stateflow chart or
individual actions in a chart. Because Stateflow charts execute by reacting
to events, you specify and program events into your charts to control their
execution. You can broadcast events to every object in the scope of the object
sending the event, or you can send an event to a specific object. You can define
explicit events that you specify direct ly, or you can define implicit events to
take place when certain actions are perf ormed, such as entering a state. For a
full description of event objects, see Chapter 8, “Defining Events”.

2-3



2 Stateflow® Chart Notation

Target Objects
You build targets to execute the applica tion you program in Stateflow charts
and the Simulink model that contains them. A target is a program that
executes a Stateflow chart or a Simulink model containing a Stateflow
machine. You build a simulation target (named sfun ) to execute a simulation
of your model. You build a code generation target (named rtw ) to execute the
Simulink model on a supported processor environment. You build custom
targets (with names other than sfun or rtw ) to pinpoint your application to
a specific environment. For a full descri ption of target objects, see “Targets
You Can Build” on page 18-3.

Naming Stateflow ® Objects
You can name Stateflow objects with an y combination of alphanumeric and
special characters. The only restrictions are that names cannot begin with
a numeric character or contain embedded spaces.

Name length should comply with the max imum identifier length enforced by
Real-Time Workshop ® code generation software. Y ou can set this parameter
in the Symbols pane of the Configurati on Parameters dialog (see “Maximum
identifier length” in the Real-Time Wor kshop software documentation). The
default is 31 characters and the maximum length you can specify is 256
characters.

For More Information
Chapter 3, “Stateflow ® Chart Semantics” describe s the various Stateflow
objects in more detail.
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States

In this section...

“What Is a State?” on page 2-5

“State Hierarchy” on page 2-5

“State Decomposition” on page 2-7

“State Labels” on page 2-8

What Is a State?
A state describes a mode of a reactive Stateflow ® chart. States in a Stateflow
chart represent these modes. The foll owing table shows the button icon for a
drawing a state in the Stateflow Editor and a short description.

Name Button Icon Description

State Use a state to de pict a mode of the system.

States can be active or inactive. When a state is active, the chart takes on that
mode. When a state is inactive, the chart is not in that mode. The activity
or inactivity of a chart’s states dynamically changes based on events and
conditions. The occurrence of events d rives the execution of the Stateflow
chart by making states become active or inactive. At any point in the execution
of a Stateflow chart, there is a combination of active and inactive states.

State Hierarchy
States can contain all other Stateflow objects except targets. Stateflow
chart notation supports the representa tion of graphical object hierarchy in
Stateflow charts with containment. A state is a superstate if it contains other
states. A state is a substate if it is contained by another state. A state that is
neither a superstate nor a substate of another state is a state whose parent
is the Stateflow chart itself.

2-5



2 Stateflow® Chart Notation

States can also contain nongraphical da ta and event object s. The hierarchy of
this containment appears in the Model Explorer. Data and event containment
is defined by specifying the parent ob ject when you create it. See Chapter 7,
“Defining Data”, Chapter 8, “Definin g Events”, and Chapter 13, “Defining
Interfaces to Simulink ® Models and the MATLAB ® Workspace” for information
and examples on representing data and event objects in the Model Explorer.

Representing State Hierarchy Example
In the following example, drawing one state within the boundaries of another
state indicates that the inner state is a substate (or child) of the outer state
(or superstate). The outer state is the parent of the inner state:

In this ex ample, the Stateflow chart is the parent of the state Car_done . The
state Car _done is the parent state of the Car_made and Car_shipped states.
The stat e Car_made is also the parent of the Parts_assembled and Painted
states. You can also say that the states Parts_assembled and Painted are
childre n of the Car_made state.

Statefl ow hierarchy can also be represente d textually, in which the Stateflow
chart i s represented by the slash ( / ) character and each level in the hierarchy
of stat es is separated by the period ( . ) character. This list is a textual
representation of the hierarchy of obje cts in the preceding example:

• /Car_d one

• /Car_d one .Car_made
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• /Car_done .Car_shipped

• /Car_done .Car_made .Parts_assembled

• /Car_done .Car_made .Painted

State Decomposition
Every state (and chart) has a decomposition that dictates what kind of
substates it can contain. All substates of a superstate must be of the same
type as the superstate’s decomposition. Decomposition for a state can be
exclusive (OR) or parallel (AND). These types of decomposition are described
in the following topics:

• “Exclusive (OR) State Decomposition” on page 2-7

• “Parallel (AND) State Decomposition” on page 2-7

Exclusive (OR) State Decomposition
Exclusive (OR) state decomposition for a superstate (or chart) is indicated
when its substates have solid borders. Exclusive (OR) decomposition is used
to describe system modes that are mu tually exclusive. When a state has
exclusive (OR) decomposition, only one substate can be active at a time. The
children of exclusive (OR) decomposition parents are OR states.

In the following example, either state A or state B can be active. If state A is
active, either state A1 or state A2 can be active at any one time.

Parallel (AND) State Decomposition
The children of parallel (AND) decomp osition parents are parallel (AND)
states. Parallel (AND) state decomposition for a superstate (or chart) is
indicated when its substates have dashed borders. This representation is
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appropriate if all states at that same level in the hierarchy are always active
at the same time.

In the following example, when state A is active, A1 and A2 are both active
at the same time:

The activity within parallel states is essentially independent, as demonstrated
in the following example.

In the following example, when state A becomes active, both states B and C
become active at the same time. When state C becomes active, either state
C1 or state C2 can be active.

State Labels
The label for a state appears on the top left corner of the state rectangle with
the following general format:

name/
entry: entry actions
during: during actions
exit: exit actions
bind: events, data
on event_name: on event_name actions
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The following example demonstrate s the components of a state label.

Each of the above actions is described in the subtopics that follow. For more
information on state action s, see the following topics:

• “Entering, Executing, and Exiting a State” on page 3-32 — Describes how
and when entry , during , exit , and on event_name actions are taken.

• “State Action Types” on page 9-3— Gives more detailed descriptions of each
type of state action.

State Nam e
A state label starts with the name of the state followed by an optional
/ character. In the preceding example, the state names are On and Off .
Valid state names consist of alphanumeric characters and can include the
underscore (_) character, for example, Transmission or Green_on .

The use of hierarchy provides some flexibility in the naming of states. The
name that you enter as part of the label must be unique when preceded by its
ancestor states. The name stored in the Stateflow hierarchy is the text you
enter as the label on the state, preceded by the names of its parent states
separated by periods. Each state can h ave the same name appear in the label
of the state, as long as their full names within the Stateflow hierarchy are
unique. Otherwise, the parser indicates an error.
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The following example shows how unique naming of states works.

Each of these states has a unique name because o f its location in the Stateflow
chart. Alth ough the name portion of the label on these states is not unique,
when the par ent state is prefixed to the name in the hierarchy, the result is
unique. The full names for these states are as follows:

• Ride1.On

• Ride1.Off

• Ride2.On

• Ride2.Off

State Actions
After the na me, you enter optional action s tatements for the state with a
keyword la bel that identifies the type of action. You can specify none, some, or
all of them . The colon after each keyword is required. The slash following the
state name is optional as long as it is followed by a carriage return.

For each ty pe of action, you can enter more than one action by separating
each action with a carriage return, semicolon, or a comma. You can specify
actions f or more than one event by adding additional on event_name lines for
differen t events.

If you ent er the name and slash followed directly by actions, the actions are
interpr eted as entry action(s). This shorthand is useful if you are specifying
only ent ry actions.

2-10



States

Entry Action. Preceded by the prefix entry or en for short. In the preceding
example, state On has entry action on_count=0 . This means that the value of
on_count is reset to 0 whenever state On becomes active (entered).

During Action. Preceded by the prefix during or du for short. In the
preceding label example, state On has two during actions, light_on() and
on_count++. These actions are executed whenever state On is already
active and any event occurs.

Exit Action. Preceded by the prefix exit or ex for short. In the preceding
label example, state Off has the exit action light_off() . If the state Off is
active, but becomes inactive (exited), this action is executed.

On Event_Name Action. Preceded by the prefix on event_name, where
event_name is a unique event. In the preceding label example, state On has an
on power_outage action. If state On is active and the event power_outage
occurs, the action handle_outage() is executed.

Bind Action. Preceded by the prefix bind . In the preceding label example, the
data on_count is bound to the state On. This means that only the state On or a
child of On can change the value of on_count . Other states, such as the state
Off , can use on_count in its actions, but it cannot change its value in doing so.
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Transitions

In this section...

“What Is a Transition?” on page 2-12

“Transition Hierarchy” on page 2-13

“Transition Label Notation” on page 2-14

“Valid Transitions” on page 2-15

What Is a Transition?
A transition is a curved line with an arrowhead t hat links one graphical object
to another. In most cases, a transition represents the passage of the system
from one mode (state) object to anothe r. A transition is attached to a source
and a destination object. The source object is where the transition begins and
the destination object is where the transition ends. This is an example of a
transition from a source state, On, to a destination state, Off .

Junctions divide a transition into tran sition segments. In this case, a full
transition consists of the segments tak en from the origin to the destination
state. Each segment is evaluated in the process of determining the validity of
a full transition.

The following example has two segmented transitions: one from state On to
state Off , and the other from state On to itself:
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A default tran sition is a special type of transi tion that has no source object.
See “Default Transitions” on page 2-25 for a description of a default transition.

Transition H ierarchy
Transitions cannot contain other objects like st ates can. However, transitions
are containe d by states. A transition’s hierarchy is described in terms of the
transition ’s parent, source, and destinatio n. The parent is the lowest level
that contai ns the source and destination of the transition. Consider the
parents for the transitions in the following example:

The following table resolves the parent age of each transition in the preceding
example. The Stateflow ® chart is represented by the / character. Each level in
the hierarchy of states is separated by the period ( . ) character.

Transi tion Label Transi tion Parent Transi tion Source
Transi tion
Destin ation

switch _off / /Power _on .Low.Heat /Power _off
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Transition Label Transition Parent Transition Source
Transition
Destination

switch_high /Power_on /Power_on .Low.Heat /Power_on .High

switch_cold /Power_on .Low /Power_on .Low.Heat /Power_on .Low.Cold

Transition Label Notation
A transition is characterized by its label. The label can consist of an event, a
condition, a condition action, and/or a tr ansition action. The ? character is the
default transition label. Transition lab els have the following general format:

event[ condition]{ condition_action}/ transition_action

You replace the names for event, condition, condition_action, and
transition_action with appropriate content s as shown in the example
“Transition Label Example” on page 2-14. Each part of the label is optional.

Transition Label Example
Use the following example to understand the parts of a transition label.
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Event Trigger. Specifies an event that causes the transition to be taken,
provided the condition, if specified, i s true. Specifying an event is optional.
The absence of an event indicates that the transition is taken upon the
occurrence of any event. Multiple even ts are specified using the OR logical
operator (|).

In the preceding example, the broadcast of event E triggers the transition
from On to Off provided the condition [off_count==0] is true.

Condition. Specifies a boolean expression that, when true, validates a
transition to be taken for the specified event trigger. Enclose the condition
in square brackets ([]). See “Condition s” on page 9-10 for information on the
condition notation.

In the preceding example, the condition [off_count==0] must evaluate as
true for the condition action to be executed and for the transition from the
source to the destination to be valid.

Condition Action. Follows the condition for a transition and is enclosed
in curly braces ( {} ). It is executed as soon as the condition is evaluated as
true and before the transition destin ation has been determined to be valid.
If no condition is specified, an impli ed condition evaluates to true and the
condition action is executed.

In the preceding example, if the condition [off_count==0] is true, the
condition action off_count++ is immediately executed.

Transition Action. Executes after the transition destination has been
determined to be valid provided the co ndition, if specified, is true. If the
transition consists of multiple segments , the transition action is only executed
when the entire transition path to the final destination is determined to be
valid. Precede the transition action with a backslash.

In the preceding example, if the condition [off_count==0] is true, and the
destination state Off is valid, the transition action Light_off is executed.

Valid Transitions
In most cases, a transition is valid wh en the source state of the transition
is active and the transition label is val id. Default transitions are different
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because there is no source state. Validity of a default transition to a substate
is evaluated when there is a transit ion to its superstate, assuming the
superstate is active. This labeling criterion applies to both default transitions
and general case transitions. The follo wing are possible combinations of valid
transition labels.

Transition Label Is Valid If...

Event only That event occurs

Event and condition That event o ccurs and the condition is true

Condition only Any event occurs and the condition is true

Action only Any event occurs

Not specified Any event occurs
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Transition Connections

In this section...

“Transitions to a nd from Exclusive (OR) States” on page 2-17

“Transitions to and from Junctions” on page 2-17

“Transitions to and from Exclusi ve (OR) Superstates” on page 2-18

“Transitions to and from S ubstates” on page 2-19

“Self-Loop Transitions” on page 2-20

“Inner Transitions” on page 2-21

Transitions to and from Exclusive (OR) States
This example sh ows simple transitions to and from exclusive (OR) states.

The transition On→Off is valid when state On is active and the event
Switch_off occurs. The transition Off →On is valid when state Off is active
and event Switch_on occurs.

See “Transitions to and from Exclusive (OR) States Examples” on page 3-54
for more information on the semantics of this notation.

Transitions to and from Junctions
This figure shows transitions to and from a connective junction.
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This example is a Stateflow ® chart of a soda machine. The Stateflow chart
is called when the external event Selection_made occurs. The Stateflow
chart awakens with the Waiting state active. The Waiting state is a common
source state. When the event Selection_made occurs, the Stateflow chart
transitions from the Waiting state to one of the other states based on the
value of the variable select . One transition is drawn from the Waiting state
to the connective junction. Four additi onal transitions are drawn from the
connective junction to the four possible destination states.

See “Transitions from a Common Source to Multiple Destinations Example”
on page 3-86 for more information on the semantics of this notation.

Transitions to and from Exclusive (OR) Superstates
This example shows transitions to and from an exclusive (OR) superstate
and the use of a default transition.
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This is an expansion of the soda machine Stateflow chart that includes the
initial example of the On and Off exclusive (OR) states. On is now a superstate
containing the Waiting and soda choices states. The transition Off →On is
valid when state Off is active and event Switch_on occurs. Now that On is a
superstate, this is an explicit transition to the On superstate.

For a transition to a superstate to be valid, the destination substate must be
implicitly defined. The d estination substate for On is implicitly defined by
making the Waiting substate the destination st ate of a default transition.
This notation defines that the resultant transition is made from the Off state
to the state On.Waiting .

The transition from On to Off is valid when state On is active and event
Switch_off occurs. However, when the Switch_off event occurs, a transition
to the Off state must take place no matter which of the substates of On is
active. This top-down approach simplifies the Stateflow chart by looking at
the transitions out of the superstate without considering all the details of
states and transitions within the superstate.

See “Default Transition Examples” on page 3-66 for more information on the
semantics of this notation.

Transitions to and from Substates
The following example shows transitions to and from exclusive (OR) substates.
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This Stateflow chart shows a transi tion from one OR substate to another
OR substate: the transition from Waiting.Ready to Orange.In_motion. The
transition to the state In_motion is valid when state Waiting .Ready is active
and the event Selection_made occurs, providing that the variable select
equals 1. This transition defines an explicit exit from the Waiting.Ready
state and an implicit exit from the Waiting superstate. On the destination
side, this transition defines an implicit entry into the Orange superstate and
an explicit entry into the Orange.In_motion substate.

See “Transitioning from a Substate to a Substate with Events Example” on
page 3-58 for more information on the semantics of this notation.

Self-Loop Transitions
A transition segment from a state to a connective junction that has an
outgoing transition segment from the connective junction back to the state is
a self-loop transition as shown in the following example:

2-20



Transition Connections

See these sections for examples of self-loop transitions:

• “Connective Junction — Self-Loop Example” on page 2-32

See “Self-Loop Transition Example” on page 3-82 for information on the
semantics of this notation.

• “Connective Junction and For Loops Example” on page 2-33

See “For-Loop Construct Example” on page 3-83 for information on the
semantics of this notation.

Inner Transi tions
An inner transition is a transition that does not exit the source state. Inner
transitions are powerful when defined for superstates with exclusive (OR)
decomposition. Use of inner transitions can greatly simplify a Stateflow chart,
as shown by t he following examples:

• “Before Usi ng an Inner Transition” on page 2-21

• “After Usin g an Inner Transition to a Connective Junction” on page 2-22

• “Using an In ner Transition to a History Junction” on page 2-23

Before Using an Inner Transition
This is an ex ample of a Stateflow chart that you can simplify by using an
inner trans ition.
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Any event occurs and awakens the Stateflow chart. The default transition
to the connective junction is valid. The destination of the transition is
determined by [C_one] and [C_two] . If [C_one] is true, the transition to A1
is true. If [C_two] is true, the transition to A2 is valid. If neither [C_one] nor
[C_two] is true, the transition to A3 is valid. The transitions among A1, A2,
and A3 are determined by E_one, [C_one] , and [C_two] .

After Us ing an Inner Transition to a Connective Junction
This example simplifies the precedin g example using an inner transition to
a connective junction.
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Any event occurs and awakens the Stateflow chart. The default transition
to the connective junction is valid. T he destination of the transitions is
determined by [C_one] and [C_two] .

You can simplify the Stateflow chart by using an inner transition in place
of the many transitions among all the states in the original example. If
state A is already active, the inner transition is used to reevaluate which of
the substates of state A is to be active. When event E_one occurs, the inner
transition is potentially valid. If [C_one] is true, the transition to A1 is
valid. If [C_two] is true, the transition to A2 is valid. If neither [C_one] nor
[C_two] is true, the transition to A3 is valid. This solution is simpler than
the previous one.

See “Processing the First Event wit h an Inner Transition to a Connective
Junction” on page 3-74 for more information on the semantics of this notation.

Using an Inner Transition to a History Junction
This example shows an inner transition to a history junction.
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State Power_on.High is initially active. When event Reset occurs, the inner
transition to the history junction is valid. Because the inner transition
is valid, the currently active state, Power_on.High , is exited. When the
inner transition to the history junction is processed, the last active state,
Power_on.High , becomes active (is reentered). If Power_on.Low was active
under the same circumstances, Power_on .Low would be exited and reentered
as a result. The inner transition in this example is equivalent to drawing an
outer self-loop transition on both Power_on.Low and Power_on.High .

See “Use of History Junctions Example” on page 2-37 for another example
using a history junction.

See “Inner Transition to a History Junction Example” on page 3-77 for more
information on the semantics of this notation.
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Default Transitions

In this section...

“What Is a Default Transition?” on page 2-25

“Drawing Default Transitions” on page 2-25

“Labeling Default Tran sitions” on page 2-26

“Default Transition Examples” on page 2-26

What Is a Default Transition?
A default transition specifies which exclusive (OR) state to enter when
there is ambiguity among two or more ne ighboring exclusive (OR) states.
A default transition has a destination but no source object. For example, a
default transition specifies which substate of a superstate with exclusive
(OR) decomposition the system enters by default, in the absence of any other
information such as a history junction. A default transition can also specify
that a junction should be entered by default.

Drawing Default Transitions
Click the Default transition button in the toolbar, and click a location in the
drawing area close to the state or junction you want to be the destination for
the default transition. Drag the mouse to the destination object to attach the
default transition. In some cases, it is useful to label default transitions.

A common programming mistake is to create multiple exclusive (OR) states
without a default transition. In the abs ence of the default transition, there is
no indication of which state becomes a ctive by default. Note that this error
is flagged when you simulate the m odel using the Debugger with the State
Inconsistencies option enabled.

This table shows the button icon and br iefly describes a default transition.
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Name
Button
Icon Description

Default transition Use a default transition to indicate, when
entering this level in the hierarchy, which
object becomes active by default.

Labeling Default Transitions
In some circumstances, you might want to label default transitions. You
can label default transitions as you wo uld other transitions. For example,
you might want to specify that one state or another should become active
depending upon the event that has occurred. In another situation, you
might want to have specific actions take place that are dependent upon the
destination of the transition.

Note When labeling default transitions, take care to ensure that there is
always at least one valid default transition. Otherwise, a Stateflow ® chart can
transition into an inconsistent state.

Default Transition Examples
The following examples show the use of de fault transitions in Stateflow charts:

• “Default Transition to a State Example” on page 2-26

• “Default Transition to a Junc tion Example” on page 2-27

• “Default Transition with a Label Example” on page 2-28

Default Transition to a State Example
This example shows a use of default transitions.
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When the Stateflow chart first wakes u p, it must decide whether to activate
state S or state B since they are exclusive (OR) states. The answer is given by
the default transition to superstate S, which is taken if valid. Because there
are no conditions on this default transition, it is taken.

State S, which is now active, has two substates, A and D. Which substate
becomes active? Only one of them can be active because they are exclusive
(OR) states. The answer is given by the default transition to substate D, which
is taken if valid. Because there are no conditions on this default transition, it
is taken.

Suppose at a different execution point, t he Stateflow chart is awakened by the
occurrence of event d and state B is active. The transition from state B to state
S is valid. When the system enters state S, it enters substate D because the
default transition is defined.

See “Default Transition Examples” on page 3-66 for more information on the
semantics of this notation.

The default transitions are required for the Stateflow chart to execute.
Without the default transition to state S, when the Stateflow chart wakes up,
none of the states becomes active. You can detect this situation at run-time
by checking for state inconsiste ncies. See “Animating Stateflow ® Charts in
Normal Mode” on page 19- 4 for more information.

Default Transition to a Junction Example
This example shows a default transition to a connective junction.
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In this examp le, the default transition to the connective junction defines
that upon en tering the Counting state, the destination is determined by the
condition o n each transition segment.

See “Defaul t Transition to a Junction Example” on page 3-67 for more
informati on on the semantics of this notation.

Default Transition with a Label Example
The follow ing example shows the labeling of default transitions.

If state A is initially active and either e1 or e2 occurs, the transition from
state A to superstate B is valid. The substates B1 and B2 both have default
transitions. The default transitions are labeled to specify the event that
triggers the transition. If event e1 occurs, the transition A to B1 is valid. If
event e2 occurs, the transition A to B2 is valid.
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See “Labeled Default Transitions Examp le” on page 3-69 for more information
on the semantics of this notation.
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Connective Junctions

In this section...

“What Is a Connective Junction?” on page 2-30

“Flow Graph Notation with Conn ective Junctions” on page 2-30

What Is a Connective Junction?
The connective junction enables represen tation of different possible transition
paths for a single transition. Connective junctions are used to help represent
the following:

• Variations of an if-then-else decision construct, by specifying conditions
on some or all of the outgoing transi tions from the connective junction

• A self-loop transition back to the source state if none of the outgoing
transitions is valid

• Variations of a for loop construct, by having a s elf-loop transition from
the connective junction back to itself

• Transitions from a common sou rce to multiple destinations

• Transitions from multiple s ources to a common destination

• Transitions from a source to a des tination based on common events

Note An event cannot trigger a transition from a connective junction to
a destination state.

See “Connective Junction Examples” on page 3-79 for a summary of the
semantics of connective junctions.

Flow Graph Notation with Connective Junctions
Flow graph notation uses connective junctions to represent common code
structures like for loops and if-then-else constructs without the use of
states. And by reducing the number of states in your Stateflow ® charts,
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flow graph notation produces efficiently generated code that helps optimize
memory use.

Flow graph notation employs combinations of the following:

• Transitions to and from connective junctions

• Self-loops to connective junctions

• Inner transitions to connective junctions

Flow graph notation, states, and state-to -state transitions s eamlessly coexist
in the same Stateflow chart. The key to representing flow graph notation
is in the labeling of the transitions (specifically the use of action language)
as shown by the following examples.

Connective Junction with All Conditions Specified Example

In the example on the left, if state A is active when event e occurs, the
transition from state A to any of states D, E, or F takes place if one of the
conditions [c1] , [c2] , or [c3] is met.

In the equivalent representation on t he right, a transition from the source
state to a connective junction is labeled by the event. Transitions from the
connective junction to the destination states are labeled by the conditions. If
state A is active when event e occurs, the transition from A to the connective
junction occurs first. The transition from the connective junction to a
destination state follows based on which of the conditions [c1] , [c2] , or [c3]
is true. If none of the conditions is true, no transition occurs and state A
remains active.
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See “If-Then-Else Decision Construct Example” on page 3-80 for more
information on the semantics of this notation.

Connective Junction with One Unconditional Transition
Example
The transition A to B is valid when A is active, event E_one occurs, and [C_one]
is true. The transition A to C is valid when A is active, event E_one occurs, and
[C_two] is true. Otherwise, given A is active and event E_one occurs, the
transition A to D is valid. If you do not explicitly specify condition [C_three] ,
it is implicit that the transition condition is not [C_one] and not [C_two] .

See “If-Then-Else Decision Construct Example” on page 3-80 for information
on the semantics of this notation.

Connective Junction — Self-Loop Example
In some situations, the transition event occurs but a condition is not met.
No transition is taken, but an action is generated. You can represent this
situation by using a connective junctio n or a self-loop transition (transition
from state to itself).
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In the example on the left, if State A is active and event e occurs and the
condition [c1] is met, the transition from A to B is taken, generating action
a1. The transition from state A to state A is valid if event e occurs and [c1] is
not true. In this self-loop transition , the system exits and reenters state A,
and executes action a2.

In the equivalent representation on the right, the use of a connective junction
makes it unnecessary to specify the implied condition [~c1] explicitly.

See “Self-Loop Transition Example” o n page 3-82 for more information on the
semantics of this notation.

Connective Junction and For Loops Example
This example shows a combination of flow graph notation and state transition
notation. Self-loop transi tions to connective junctions can be used to represent
for loop constructs.

In state A, event E occurs. The transition from state A to state B is valid if
the conditions along the transition path are true. The first segment of the
transition does not have a condition, but does have a condition action. The
condition action, { i=0} , is executed. The condition on the self-l oop transition
is evaluated as true and the condition actions {i++;func1()} execute. The
condition actions execute until the condition [i<10] is false. The condition
actions on both the first segment and the self-loop transition to the connective
junction effectively execute a for loop (for i values 0 to 9 execute func1() ).
The for loop is executed outside the context of a state. The remainder of the
path is evaluated. Because there are no conditions, the transition completes
at the destination, state B.

2-33



2 Stateflow® Chart Notation

See “For-Loop Construct Example” on page 3-83 for information on the
semantics of this notation.

Flow Graph Notation Example
This example shows a real-world use of flow graph notation and state
transition notation. This Stateflow ch art models an 8-bit an alog-to-digital
converter (ADC).

Consider the case when state Sensor.Low is active and event UPDATEoccurs.
The inner transition from Sensor to the connective junction is valid. The next
transition segment has a condition action, {start_adc()} , which initiates
a reading from the ADC. The self-loop on the second connective junction
repeatedly tests the condition [adc_busy()] . This condition evaluates as true
once the reading settles (stabilizes) and the loop completes. This self-loop
transition is introduces the delay ne eded for the ADC reading to settle. The
delay could have been represented by another state with a counter. Using
flow graph notation in this example avoids an unnecessary use of a state and
produces more efficient code.

The next transition segment condition action, { sensorValue=read_adc()} ,
puts the new value read from the ADC in the data object sensorValue .
The final transition segment is determined by the value of sensorValue .
If [sensorValue <100] is true, the state Sensor.Low is the destination.
If [sensorValue >200] is true, the state Sensor.High is the destination.
Otherwise, state Sensor.Normal is the destination state.
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See “Flow Graph Notation Example” on page 3-84 for information on the
semantics of this notation.

Connective Junction from a Common Source to Multiple
Destinations Example
Transition s A to B and A to C share a common source state A. An alternative
representa tion uses one arrow from A to a connective junction, and multiple
arrows lab eled by events from the junction to the destination states B and C.

See “Transitions from a Common Source to Multiple Destinations Example”
on page 3-86 for information on the semantics of this notation.

Connective Junction Common Events Example
Suppose, for example, that when event e1 occurs, the system, whether it is in
state A or B, transfers to state C. Suppose that transitions A to C and B to C
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are triggered by the same event e1, so that both destination state and trigger
event are common to the transitions. Th ere are three ways to represent this:

• By drawing transitions from A and B to C, each labeled with e1

• By placing A and B in one superstate S, and drawing one transition from S
to C, labeled with e1

• By drawing transitions from A and B to a connective junction, then drawing
one transition from the junction to C, labeled with e1

This Stateflow chart shows the simplification using a connective junction.

See “Transitions from a Source to a D estination Based on a Common Event
Example” on page 3-88 for information on the semantics of this notation.
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History Junctions

In this section...

“What Is a History Junction?” on page 2-37

“History Junctions and Inner Transitions” on page 2-38

What Is a History Junction?
A history junction represents histor ical decision points in the Stateflow ® chart.
The decision points are based on histori cal data relative to state activity.
Placing a history junction in a superstate indicates that historical state
activity information is used to determi ne the next state to become active. The
history junction applies only to the level of the hierarchy in which it appears.

Use of History Junctions Example
The following example uses a history junction:

Superstate Power_on has a history junction and contains two substates. If
state Power_off is active and event switch_on occurs, the system could enter
either Power_on .Low or Power_on .High . The first time superstate Power_on
is entered, substate Power_on .Low is entered because it has a default
transition. At some point afterward, if state Power_on .High is active and
event switch_off occurs, superstate Power_on is exited and state Power_off
becomes active. Then event switch_on occurs. Since Power_on .High was
the last active state, it becomes ac tive again. After the first time Power_on
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becomes active, the choice between entering Power_on .Low or Power_on .High
is determined by the history junction.

See “Default Transition and a History Junction Example” on page 3-68 for
more information on the semantics of this notation.

History Junctions and Inner Transitions
By specifying an inner transition to a history junction, you can specify that,
based on a specified event and/or condition, the active state is to be exited and
then immediately reentered.

See “Using an Inner Transition to a History Junction” on page 2-23 for an
example of this notation.

See “Inner Transition to a History Junction Example” on page 3-77 for more
information on the semantics of this notation.
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Graphical Functions

What Is a Graphical Function?
A graphical function is a function def ined graphically by a flow graph that
includes Stateflow ® action language.

Example of Using a Graphical Function
This figure shows a graphical function side by side in a Stateflow chart with
the transition that calls it:

In this example, the function z = f(x,y) is called in the condition action of
the transition from state A to state B. The function is defined using symbols
that are valid only within the function itself. The function is called using data
objects available to states A and B and their parent states (if any).

Advantages of Using Graphical Functions
Graphical functions are similar to textual functions such as C and MATLAB ®

functions in these ways:

• Graphical functions can accept arguments and return results.

• You can invoke graphical functions in transition and state actions.

Unlike C and MATLAB functions, howeve r, graphical functions are native
Stateflow graphical objects. You use the Stateflow Editor to create them,
and they reside in your Stateflow ch art. This property makes graphical
functions easier to create, access, and manage than textual custom code
functions, whose creation requires exter nal tools, and whose definition resides
separately from the chart.
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For more information, see “Using Grap hical Functions to Extend Actions”
on page 6-28.
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Boxes

What Is a Box?
A box is a graphical object that organize s other objects in your chart, such as
functions and states.

Example of Using a Box
In this example, the box Motor groups together related states Off and On.

For rules of using boxes and other examples, see “Using Boxes to Extend
Charts” on page 6-43.
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Stateflow ® Chart Semantics

Executing an Event (p. 3-3) Describes the behavior of events that
drive Stateflow ® chart execution

Executing a Chart (p. 3-6) Describes how charts become active,
execute, and become inactive

Executing a Transition (p. 3-19) Describes the processes for grouping
and executing a transition

Transition Testing Order (p. 3-22) Describes implicit and explicit modes
for ordering transitions

Entering, Executing, and Exiting a
State (p. 3-32)

Describes how states become active,
execute, and become inactive

Execution Order for Parallel States
(p. 3-38)

Describes implicit and explicit modes
for setting execution order of parallel
states

Early Return Logic for Event
Broadcasts (p. 3-49)

Describes the logic used when events
interrupt the typical execution
behavior of Stateflow charts

Semantic Examples (p. 3-52) A list of the semantic (behavioral)
examples provided in the remainder
of this chapter

Transitions to and from Exclusive
(OR) States Examples (p. 3-54)

Examples that describe the behavior
of transitions that exit and enter
exclusive (OR) states

Condition Action Examples (p. 3-60) Examples that describe the behavior
of Stateflow charts using condition
actions
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Default Transition Examples
(p. 3-66)

Examples that describe the behavior
of Stateflow charts using default
transitions

Inner Transition Examples (p. 3-71) Examples that describe the behavior
of Stateflow charts using inner
transitions

Connective Junction Examples
(p. 3-79)

Examples that describe the behavior
of Stateflow charts using connective
junctions

Event Actions in a Superstate
Example (p. 3-91)

Example that describes the behavior
of Stateflow charts using event
actions.

Parallel (AND) S tate Examples
(p. 3-93)

Example Stateflow charts show the
behavior of parallel (AND) states

Directed Event Broadcasting
Examples (p. 3-105)

Example Stateflow charts show how
to use directed event broadcasting
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Executing an Event

In this section...

“How Stateflow ® Charts Respond to Events” on page 3-3

“Sources for Stateflow ® Events” on page 3-4

“Processing Events” on page 3-4

How Stateflow ® Charts Respond to Events
Stateflow ® charts execute only in response to an event in a cyclical manner.

Because a chart runs on a single thread, actions that take place based on an
event are atomic to that event. This me ans that all activity caused by the
event in the chart is completed before returning to whatever activity was
taking place before receiving the event. Once an event initiates an action, the
action completes unless interrupted by an early return.
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Sources for Stateflow ® Events
Simulink ® events awaken Stateflow charts. You can use events to control the
processing of your charts by broadcasting events in the action language, as
described in “Broadcasting Events in Actions” on page 9-51. For examples
using event broadcasting and directed e vent broadcasting, see the following:

• “Condition Actions to Broadcast Even ts to Parallel (AND) States Example”
on page 3-64

• “Cyclic Behavior to Avoid with Condition Actions Example” on page 3-64

• “Event Broadcast State Action Example” on page 3-93

• “Event Broadcast Transition Act ion with a Nested Event Broadcast
Example” on page 3-96

• “Event Broadcast Condition Action Example” on page 3-100

• Directed Event Broadcasting

Events have hierarchy (a parent) and scope. The parent and scope together
define a range of access to events. It i s primarily the event’s parent that
determines who can trigger on the event (has receive rights). See the Name
and Parent fields for an event in “Setting Event Properties in the Event
Dialog” on page 8-6 for more information.

Processing Events
Stateflow charts process events from the top down through the hierarchy of
the chart, as follows:

1 Executes during and on event_name actions for the active state

2 Checks for valid transitions in substates

All events, except for the output edge trigger to a Simulink block (see the
following note), have the following execution in a chart:

1 If the receiver of the event is active, then it is executed (see “Executing an
Active Chart” on page 3-7 and “Executing an Active State” on page 3-34).
(The event receiver is the parent of the event unless the event was explicitly
directed to a receiver using the send() function.)
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2 If the receiver of the event is not active, nothing happens.

3 After broadcasting the event, the bro adcaster performs early return logic
based on the type of action state ment that caused the event.

For an understanding of early return logic, see “Early Return Logic for
Event Broadcasts” on page 3-49.

Note Output edge-trigger event exe cution in a Simulink model is
equivalent to toggling the value of an output data value between 1 and 0. It
is not treated as a Stateflow event. Se e “Defining Edge-Triggered Output
Events” on page 13-25.
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Executing a Chart

In this section...

“Lifecycle of a Stateflow ® Chart” on page 3-6

“Executing an Inactive Chart” on page 3-6

“Executing an Active Chart” on page 3-7

“Executing a Chart with Super Step Semantics” on page 3-7

“Executing a Chart at Initialization” on page 3-17

Lifecycle of a Stateflow ® Chart
Stateflow ® charts go through several stages of execution:

Stage Description

Inactive Chart has no act ive states

Active Chart has activ e states

Sleeping Chart has activ e states, but no
events to process

When a Simulink ® model first triggers a Statefl ow chart, the chart is inactive
and has no active states. After the chart executes and completely processes
its initial trigger event from the Simul ink model, it transfers control back to
the model and goes to sleep. At the next Simulink trigger event, the chart
changes from the sleeping to active stage.

See “Executing an Event” on page 3-3.

Executing an Inactive Chart
When a chart is inactive and first triggered by an event from a Simulink
model, it first executes its set of defau lt flow graphs (see “Executing a Set of
Flow Graphs” on page 3-20). If this action does not cause an entry into a state
and the chart has parallel decomposition, then each parallel state is entered
(see “Entering a State” on page 3-32).
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If executing the default flow paths does not cause state entry, a state
inconsistency error occurs.

Executing an Active Chart
After a chart has been triggered the first time by the Simulink model, it is an
active chart. When it receives another event from the model, it executes again
as an active chart. If the chart has no states, each execution is equivalent to
initializing a chart. Otherwise, the active children are executed. Parallel
states are executed in the same order that they are entered.

Executing a Chart with Super Step Semantics

• “About Super Step Semantics” on page 3-7

• “Enabling Super Step Semantics” on page 3-8

• “Super Step Example” on page 3-10

• “How Super Step Semantics Works wit h Multiple Input Events” on page
3-13

• “Detecting Infinite Loops in T ransition Cycles” on page 3-16

About Super Step Semantics
By default, Stateflow charts execute once for each active input event. If
there are no input events, then the cha rts execute once every time step. If
you are modeling a system that must react quickly to inputs, you can enable
super step semantics, a Stateflow chart property (see “Enabling Super Step
Semantics” on page 3-8).

When you enable super step semantics, a Stateflow chart executes multiple
times for every active input event or for every time step in which there are no
input events. This means that the chart takes valid transition until either of
these conditions occurs:

• There are no more valid transitions, that is, the chart reached a stable
active state configuration

• The number of transitions taken exceeds a user-specified maximum
number of iterations
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In a super step, your chart responds faster to inputs but performs more
computations in each time step. The refore, when generating code for an
embedded target, make sure that the ch art can finish the computation in a
single time step. To achieve this behavior, fine-tune super step parameters
by setting an upper limit on the number of transitions that the chart takes
per time step. For simulation targets , specify whether the chart goes to the
next time step or generates an error if it reaches the maximum number of
transitions prematurely. However, in generated code for embedded targets,
the chart always goes to the next time s tep after taking the maximum number
of transitions.

Enabling Super Step Semantics
To enable super step semantics, follow these steps:

1 Right-click inside a chart and select Properties from the context menu.

The chart properties dialog box opens on your desktop.

2 In the chart properties dialog box, select the Enable Super Step
Semantics check box.

Two additional fields appear, as shown:

3-8



Executing a Chart

3 Enter a value in the field Maximum Iterations in Each Super Step.

The value you enter is the maximum number of transitions a Stateflow
chart can take in one super step. Try to choose a number that allows the
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chart to reach a stable state within the time step, based on the mode logic
of your chart.

4 Select an action from the drop-down menu in the field Behavior after
too many iterations.

Your selection determines how the chart behaves during simulation if
it exceeds the maximum number of ite rations in the super step before
reaching a stable state. Here are the options:

Behavior Description

Proceed The chart goes back to sleep with the last active
state configuration, that is, after updating local
data at the last valid transition in the super step.

Throw Error Simulation stops and the chart generates an error,
indicating that too many i terations occurred while
trying to reach a stable state.

Note Choosing Throw Error can help detect
infinite loops in transition cycles (see “Detecting
Infinite Loops in Transition Cycles” on page 3-16.

Note This option is relevant only for simulation targets. For embedded
targets, code generation goes to the n ext time step rather than generating
an error.

Super Step Example
Here is a model that illustrates how super step semantics differs from Classic
Stateflow chart semantics:
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In this model, a Constant block outputs a constant value of 20 to input u in a
Stateflow chart. Because the value of u is always 20, each transition is valid.
In Classic Stateflow chart semantics, t he chart takes only one transition in
each simulation step, incrementing y each time.
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When you enable super step semantics, the chart takes all valid transitions
in each time step, stopping at state C with y = 3.
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How Super S tep Semantics Works with Multiple Input Events
When you enable super step semantics f or a Stateflow chart with multiple
active input events, the chart takes all valid transitions for the first active
event before it begins processing the next active event. For example, consider
the following model:
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In this model, the Step block produces a 2-by-1 vector signal that goes from
[0,0] to [1,1] at time t = 1. As a result, when the Simulink model wakes up
the Stateflow chart, events E1 and E2 are both active. If you enable super
step semantics, the chart takes all valid transitions for event E1, as shown in
the highlighted path:
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�

�

As you can see, the chart takes transitions from state A to B and then from
state B to C in a single super step. The scope shows that y = 3 at the end
of the super step:

3-15



3 Stateflow® Chart Semantics

In a super step, this chart never transitions to state D because there is no
path from state C to state D.

Detectin g Infinite Loops in Transition Cycles
If your chart contains transition cycles, taking multiple transitions in a single
time step can cause infinite loops. Consider the following example:
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In this example, the transitions between states A and B cycle produce an
infinite loop because the value of x remains constant at 1. One way to detect
infinite loops is to configure your ch art to generate an error if it reaches a
maximum number of iterations in a su per step. See “Enabling Super Step
Semantics” on page 3-8.

Executing a Chart at Initialization

By default, the first time a chart wakes up it executes the default transition
paths. At this time it can access inputs, write to outputs, and broadcast
events. If you want your chart to begin ex ecuting from a known configuration,
you can enable the option to execute at initialization. When you turn on this
option, a chart’s state configuration ini tializes at time 0 instead of at the first
occurrence of an input event. The defau lt transition paths of the chart are
executed during the model initialization phase at time 0, corresponding to the
mdlInitializeCondition s() phase for S-functions.

You enable the option Execute (enter) Chart At Initialization in chart
properties, as described in “Setting Prop erties for Individual Charts” on page
13-6.
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Note If an output of this chart connects to a SimEvents ® block, do not enable
this option. To learn more about using Stateflow charts and SimEvents blocks
together in a model, see the SimEv ents software documentation.

Due to the transient nature of the initialization phase, do not perform certain
actions in the default transition paths of the chart — and associated state
entry actions — which execute at initialization. Follow these guidelines:

• Do not access chart input data becaus e the blocks connected to Stateflow
chart input ports may not have initialized their outputs yet.

• Do not call exported graphical functions from other charts because those
charts may not have been initialized yet.

• Do not broadcast function-call out put events because the triggered
subsystems may have not been initialized yet.

Execute at initialization is ignored in Stateflow charts that do not contain
states.
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Executing a Transition

In this section...

“About Transitions” on page 3-19

“Transition Flow Graph Types” on page 3-19

“Executing a Set of Flow Graphs” on page 3-20

About Transitions
Transitions play a large role in defining the animation or execution of a
system. If your chart has exclusive (OR) states, its execution begins with the
default transitions that point to the first active states in your chart.

Transitions have sources and destinations; thus, any actions associated with
the sources or destinations are related t o the transition th at joins them. The
type of the source and destination is equa lly important to define the semantics.

Transition Flow Graph Types
Before executing transitions for an active state or chart, Stateflow ® software
groups transitions by the following types:

• Default flow graphs are all default tr ansition segments that start with
the same parent.

• Inner flow graphs are all transition segments that originate on a state
and reside entirely within that state.

• Outer flow graphs are all transitio n segments that originate on the
respective state but reside at least partially outside that state.

Each set of flow graphs includes other transition segments connected to a
qualifying transition segment through junctions and tran sitions. Consider
the following example:
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In this exam ple, state A has both an inner and a default transition that
connect to a junction with outgoing transitions to states A.A1 and A.A2 . If
state A is ac tive, its set of inner flow graphs includes:

• The inner t ransition

• The outgoi ng transitions from the junction to state A.A1 and A.A2

In additio n, state A’s set of default flow graphs includes:

• The defaul t transition to the junction

• The two out going transitions from the junction to state A.A1 and A.A2

In this cas e, the two outgoing tr ansition segments fr om the junction become
members of more than one flow graph type.

Executing a Set of Flow Graphs
Each flow g raph group is executed in the orde r of group priority until a valid
transiti on is found. The default tr ansitions group is executed first, followed by
the outer transitions group and then the inner transitions group. Each flow
graph gro up is executed with the following procedure.

1 Order the group’s transition segments for the active state.
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An active state can have several possible outgoing transitions. The chart
orders these transitions before checki ng them for validity. See “Transition
Testing Order” on page 3-22.

2 Select the next transition segment in the set of ordered transitions.

3 Test the transition segment for validity.

4 If the segment is invalid, go to step 2.

5 If the destination of the transition s egment is a state, do the following:

a No more transition segments are tes ted and a transition path is formed
by including the transition segment from each preceding junction back
to the starting transition.

b The states that are the immediate children of the parent of the transition
path are exited (see “Exiting an Active State” on page 3-34).

c The transition action for the fin al transition segment of the full
transition path is executed.

d The destination state is entered (see “Entering a State” on page 3-32).

6 If the destination is a junction with no outgoing transition segments, do
the following:

a Testing stops without any states being exited or entered.

7 If the destination is a junc tion with outgoing transi tion segments, repeat
step 1 for the set of outgoing segments.

8 After testing all outgoing transition segments at a junction, take the
following actions:

a Back up the incoming transition segment that brought you to the
junction

b Continue at step 2, starting with the next transition segment after the
backup segment

The set of flow graphs completes execu tion when all starting transitions
have been tested.
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Transition Testing Order

In this section...

“Implicit Order Mode” on page 3-22

“Explicit Order Mode” on page 3-26

Implicit Order Mode
Implicit order mode is the default mod e for all models. Transitions from a
single source are ordered for testing according to the following guidelines (in
descending order of priority):

1 Endpoint Hierarchy – Transitions w hose endpoints are attached to higher
hierarchical levels are placed first in testing order. See “Ordering by
Hierarchy” on page 3-22.

2 Label – Transitions are ordered for testing according to the language
constructs in their labels. See “Ordering by Label” on page 3-23.

3 Angular Surfa ce Position of Transition Source – Transitions are ordered
for testing b ased on the angular position of the transition source on the
surface of th e originating object. See “Ord ering by Geometric Position of
Source” on page 3-23.

Ordering by Hierarchy
Transitions are evaluated in a top-down manner based on hierarchy. In the
following e xample, an event occurs while state A1 is active.
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Because state B is a sibling of state A and at a higher hierarchical level
than state A2, a sibling of A1, the transition from state A1 to state B takes
precedence over the transition from state A1 to state A2.

Ordering by Label
Transitions of equal endpoint hierarch ical level are evaluated based on their
labels, in the following order of precedence:

1 Labels with events and conditions

2 Labels with events

3 Labels wi th conditions

4 No label

The following example shows how to ord er single source transitions by the
angular surface position of the source.

Ordering by Geometric Position of Source
Stateflow ® charts order transitions based on their angular position on the
surface of the source object. The smal lest clock position has the highest
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priority. For example, a transition wit h a 2 o’clock source position has a higher
priority than a transition with a 4 o’clo ck source position. A transition with a
12 o’clock source position has the lowest priority.

A chart evaluates multiple outgoing transitions of equivalent priority in a
clockwise progression, starting at the upper left corner of the source state.

In this example, the transitions are of equivalent label priority. The conditions
[C_one == 1] and [ C_two == 2] are both false and the condition [ C_three == 3]
is true. Also, the hierarchical level of the endpoint of each transition is the
same because all the states i n the example are siblings.

The outgoing transitions from state A in the preceding chart are evaluated
in the following order:

1 Starting at the upper left corner of source state A, the first transition in a
clockwise progression is the transition from state A to state B.

Since the condition [C_one == 1] is false, this transition is not valid.

2 The next transition in a clockwise pro gression is the transition from state
A to state C.

Since the condition [ C_two == 2] is false, this transition is not valid.
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3 The next transition is the transition from state A to state D.

Since the condition [ C_three == 3] is true, this transition is valid and is
taken.

Multiple outgoing transitions from j unctions that are of equivalent label
priority are evaluated according to the same angular position prioritization.

In this e xample,

• All outg oing transitions from the junction have conditions, which makes
them equ al in label priority.

• The conditions [ C_three == 3] and [ C_four == 4] are true.

• The junc tion source point for the transition to state E is exactly 12 o’clock.

The outg oing transitions from the juncti on are evaluated in the following
order:

1 The tran sition to state B is evaluated. Since the condition [ C_one == 1]
is fals e, this transition is not valid.
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2 The transition to state C is eva luated. Since the condition [ C_two == 2]
is false, this transition is not valid.

3 The transition to state D is evaluated. Since the condition [ C_three == 3] is
true, this transition is valid and taken.

Since the transition to D i s taken, the transition to state E is not evaluated.

Explicit Order Mode
Implicit ordering rules are complex and hard to master. Also, when you modify
a chart for cosmetic purposes, rearranging transitions may inadvertently
change execution order. As an alternati ve, you can explicitly control the order
in which transitions are tested for execution.

Note You can reorder transitions only within their type (inner, outer, or
default). For more information, see “ Transition Flow Graph Types” on page
3-19.

To control the order of transitions, perform the following steps:

1 “Switching to Explicit Order Mode” on page 3-27

2 “Changing the Transition Order” on page 3-29

When you switch to explicit transition ordering, a Stateflow chart stops
evaluating the implicit rules. All the existing transitions in a chart retain
their current order numbers until you explicitly change them. All the newly
created transitions for a source are automatically numbered in the order you
create them, starting with the next available number for the source.

You can change the order of outgoing tr ansitions for a source by explicitly
renumbering them. When you change a transition number, a Stateflow chart
automatically renumbers the other ou tgoing transitions for the source by
preserving their relative order. This beh avior is consistent with the automatic
renumbering rules for the Simulink ® ports.

For example, if you have a source with fi ve outgoing transitions, changing
transition 4 to 2 results in the following automatic renumbering.

3-26



Transition Testing Order

Automatic Renumbering of Transitions During Explicit Reordering

Switching to Explicit Order Mode
You switch to explicit ordering of trans itions by setting your chart property
preferences.

1 In the Stateflow Editor, from the File menu, select Chart Properties.

The propert ies dialog box for the chart appears.

2 Select the User specified state/transition execution order check box,
as shown:
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3 Click OK to apply the change and close the dialog box.

Now you can change the transition execut ion order for any source in the chart.

Switching between modes. If you switch back to implicit order mode
after having explicitly reordered the tran sitions, the transition order is reset
to follow the implicit rules.

Similarly, if you eventually change back to explicit order mode, without
changing the chart, you can restore the p revious explicit transition order.
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Whenever you switch from one transi tion ordering mode to another, the
diagnostic viewer displays warnings about the changes in transition numbers.

Note If you change back to explicit order mode after modifying the chart,
you may not be able to restore the previou s explicit transition order. Review
the warnings in the diagnostic viewer and change the transition order, as
necessary.

Changing the Transition Order
You change the order of transitions or iginating from a source by explicitly
renumbering them.

1 Right-click a transition and select Execution Order.

Note If you select Execution Order while in implicit order mode, the only
option available is Enable ‘User specified execution order’ for this
chart. This option opens the properties dialog box for the chart to let you
switch to explicit order mode, as described in “Switching to Explicit Order
Mode” on page 3-27.

A context menu of available transition numbers appears, with a check
mark next to the current number for this transition, as shown:
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2 Select the new transition number. Th e Stateflow chart automatically
renumbers the other transitions for the source by preserving the relative
transition order, as shown in the illustration.

3 Repeat this procedure to renumber t he other transitions as necessary.

Another way to access the transition ord er number is through its properties:

1 Right-click a transition and select Properties. The properties dialog box
for the transition appears.

2 Click in the Execution order box. A drop-down list of valid transition
numbers appears, as shown in the following illustration.

3-30



Transition Testing Order

3 Select the new transition number and click Apply. If the explicit order
mode is enabled, the State flow chart assigns the new number to the current
transition and automatically renum bers the other transitions. If the
Stateflow chart is in the implicit ord er mode, an error dialog box appears
and the old number is retained.
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Entering, Executing, and Exiting a State

In this section...

“Entering a State” on page 3-32

“Executing an Active State” on page 3-34

“Exiting an Active State” on page 3-34

“State Execution Example” on page 3-35

Entering a State
A state is entered (becomes active) in one of the following ways:

• An incoming transition cro sses state boundaries.

• An incoming transition ends at the state boundary.

• It is the parallel state child of an activated state.

A state performs its entry action (if specified) when it becomes active. The
state is marked active before its entry action is executed and completed.

The execution steps for entering a state are as follows:

1 If the parent of the state is not active, perform steps 1 through 4 for the
parent first.

2 If the state is a parallel state, check if a sibling parallel state previous in
entry order is active. If so, start at step 1 for this parallel state.

Parallel (AND ) states are ordered for entry based on their vertical,
top-to-bott om position in the Stateflow ® Editor. Parallel states that occupy
the same vert ical level are ordered for entry from left to right.

Consider the following example:
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In this example, states are aligned as follows:

• Parallel states A and B are aligned at the same vertical level.

• Parallel states A and C, and states B and D are aligned at the same
horizontal position.

Based on their positions in the Stateflo w Editor, the order of entry for these
states is as follows:

a A

b B

c D

d C

The Stateflow chart marks this order with an order number in the
upper-right corner of the state (1, 2, 3, 4, respectively).

3 Mark the state active.

4 Perform any entry actions.

5 Enter children, if needed:

a Execute the default flow paths for the state unless it contains a history
junction.

b If the state contains a history junction and there is an active child of this
state at some point after the most recent chart initialization, perform
the entry actions for that child.
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c If this state has children that are paral lel states (parallel decomposition),
perform entry steps 1 - 5 for each state according to its entry order.

6 If the state is a parallel state, perform all entry steps for the sibling state
next in entry order.

7 If the transition path parent is not the same as the parent of the current
state, perform entry steps 6 and 7 for the immediate parent of this state.

8 The chart goes to sleep.

Executing an Active State
When states become active, they perform the following execution steps:

1 Execute the set of outer flow graphs (see “Executing a Set of Flow Graphs”
on page 3-20).

If this action causes a state tr ansition, execution stops.

Note This step is never required for parallel states.

2 Perform during actions and valid on event name actions.

Note Stateflow charts process these actions based on their order of
appearance in state labels.

3 Execute the set of inner flow graphs.

If this action does not cause a state tr ansition, the active children are
executed, starting at step 1. Parallel states are executed in the same order
that they are entered.

Exiting an Active State
A state is exited (becomes inactive) in one of the following ways:

• An outgoing transition origin ates at the state boundary.
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• An outgoing transition crosses the state boundary.

• It is a parallel state child of an activated state.

A state performs its exit actions before becoming inactive.

The execution steps for exiting a state are as follows:

1 Sibling parallel states exit starting with the last-entered and progress in
reverse order to the first-entered. S ee step 2 of “Entering a State” on page
3-32.

2 If a state has active children, performs the exit actions of the child states in
the reverse order from when they were entered.

3 Perform any exit actions.

4 Mark the state as inactive.

State Execution Example
The following example shows how active and inactive states respond to events.

Inactive Chart Event Reaction
Inactive charts respond to events as follows:

1 An event occurs and the Stateflow chart wakes up.

2 The chart checks to see if there is a valid transition as a result of the event.
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A valid default transition to state A is detected.

3 State A is marked active.

4 State A entry actions ( entA() ) execute and complete.

5 The chart goes back to sleep.

Sleeping Chart Event Reaction
Sleeping charts respond to events as follows:

1 Event E_one occurs and the Stateflow chart wakes up.

State A is active from the preceding steps 1 - 5.

2 The chart root checks to see if there is a valid transition as a result of
E_one. A valid transition is detected from state A to state B.

3 State A exit actions ( exitA() ) execute and complete.

4 State A is marked inactive.

5 State B is marked active.

6 State B entry actions ( entB() ) execute and complete.
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7 The chart goes back to sleep.
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Execution Order for Parallel States

In this section...

“What Does Ordering Mean for Parallel States?” on page 3-38

“Implicit Ordering of Parallel States” on page 3-39

“Explicit Ordering of Par allel States” on page 3-40

“Maintaining Order of Parallel States” on page 3-42

“How a Stateflow ® Chart Assigns Priorities to Restored States” on page 3-45

“Switching Between Implicit and Explicit Ordering” on page 3-47

“Ordering of Parallel States in Boxes and Subcharts” on page 3-47

What Does Ordering Mean for Parallel States?
Although multiple parallel (AND) states in the same chart execute
concurrently, the Stateflow ® chart must determine when to activate each
one during simulation. This ordering determines when each parallel state
performs the actions that take it throug h all stages of execution, as described
in “Entering, Executing, and E xiting a State ” on page 3-32.

Unlike exclusive (OR) states, parallel states do not typically use transitions.
Instead, order of execution depends on:

• Implicit ordering by geometry

A Stateflow chart uses a set of inter nal rules to order parallel states
according to geometric position (see “I mplicit Ordering of Parallel States”
on page 3-39).

• Explicit ordering

You can override implicit rules by expli citly specifying the execution order
of parallel states on an individual basis ( see “Explicit Ordering of Parallel
States” on page 3-40).

Parallel states are assigned priority numbers based on order of execution.
The lower the number, the higher the pr iority. Each state’s priority number
appears in its upper right corner.
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Execution order is a chart property; all parallel states in the chart inherit
the property setting. You cannot mix im plicit and explicit ordering in the
same Stateflow chart. You can mix charts with different ordering modes in
the same Simulink ® model.

Implicit Ordering of Parallel States
By default, a Stateflow chart orders parallel states implicitly based on where
they are located. Priority goes from top to bottom and then left to right,
according to these rules:

• The higher a parallel state’s vertical position in the chart, the higher its
priority for execution.

• Among parallel states with the same vertical position, the leftmost state
receives highest priority.

The following example illustrates how t hese rules apply to top-level parallel
states and parallel substates:
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Explicit Ordering of Parallel States
A disadvantage of implicit ordering i s that it creates a dependency between
design layout and execution priority . When you rearrange parallel states
in your chart, you may inadvertently change order of execution and affect
simulation results. To gain more control over your designs, you can override
implicit ordering by explicitly setting execution priorities.

Using Explicit Ordering for Parallel States
To use explicit ordering for parallel states, perform these tasks:

1 “Enabling Explicit Ordering at the Chart Level” on page 3-40

2 “Setting Execution Order for Paralle l States Individually” on page 3-42

Enabling Explicit Ordering at the Chart Level. To enable explicit ordering
for parallel states, follow these steps:

1 Open the properties dialog box for your chart by selecting Chart
Properties from the File menu in the Stateflow Editor.

Tip You can also use one of these methods:

• Right-click inside the top level of the chart and select Properties from
the drop-down menu.

• Right-click inside one of the parallel states in the chart and select
Execution Order > Enable user-specified execution order for this
chart from the drop-down menu.

The properties dialog box appears.

2 In the properties dialog box, select the check box labeled User specified
state/transition execution order, as shown:
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3 Click OK.

If your Stateflow chart already contains parallel states that have been
ordered implicitly, the existing priorit ies are preserved until you explicitly
change them. When you add new parall el states in explicit mode, your
chart automatically assigns priorities based on order of creation (see “How
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Explicit Ordering Works” on page 3- 42). However you can now explicitly
change execution order on a state-by-state basis, as described in “Setting
Execution Order for Parallel States Individually” on page 3-42.

Setting Execution Order for Parallel States Individually. After you
enable explicit ordering, you can cha nge the execution order of individual
parallel states. Right-click the parallel state of interest and select a new
priority from the Execution Order menu.

How Explicit Ordering Works
When you enable explicit order ing on a new Stateflow chart — or one that
does not yet contain any parallel states — the chart automa tically assigns
priority numbers to paral lel states in the order you create them. Numbering
starts with the next available number within the parent container.

When you first enable explicit ordering on a Stateflow chart that already
contains parallel states, the original im plicit priorities are preserved for the
existing parallel states. When you add n ew parallel states, execution order is
assigned in the same way as for new Stateflow charts — in order of creation.

You can explicitly override execution order assignments at any time on a
state-by-state basis, as described in “Setting Execution Order for Parallel
States Individually” on page 3-42. When you change execution order for a
parallel state, the Stateflow chart automatically renumbers the other parallel
states to preserve their relative execu tion order. See “Maintaining Order of
Parallel States” on page 3-42.

Maintaining Order of Parallel States
Whether you use implicit or explicit ord ering, a chart attempts to reconcile
execution priorities when you remove, renumber, or add parallel states. In
these situations, a chart reprio ritizes the parallel states to

• Fill in gaps in the sequence so tha t ordering is always contiguous

• Ensure that no two states have the same priority

• Preserve the intended relative priority of execution
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Preserving Relative Priorities in Implicit Ordering Mode
For implicit ordering, a Stateflow ch art preserves the intended relative
priority based on geometry. Consider t his example of implicit ordering:

If you remove top-level state b and substate e, the chart automatically
reprioritizes the remaining parallel sta tes and substates to preserve implicit
geometric order:

Preserving Relative Prioriti es in Explicit Ordering Mode
For expli cit ordering, a chart preserves the us er-specified priorities. Consider
this exam ple of explicit ordering:
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In this exam ple, the ordinal names of the para llel states indicate the order
in which th ey were created. The chart reprioritizes the parallel states and
substates when you perform these actions:

1 Change the priority of top-level state 2nd to 3

2 Add a top-level state 7th

3 Remove substate 5th
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The chart preserved the priority explicitly set for top-level state 2nd , but
renumbered all other parallel states to preserve their prior relative order.

How a Stateflow ® Chart Assigns Priorities to Restored
States
There are situations in which you need to restore a parallel state after you
remove it from a Stateflow chart. In impl icit order mode, a chart reassigns the
execution priority based on where the st ate is restored. If the state returns to
its original location in the chart, its original priority is restored.

However, in explicit order mode, a Stateflow chart cannot always reinstate
the original execution priority to a restored state. It depends on how the
state is restored, as follows:
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If you remove a state
by...

And restore the state
by...

What is the priority?

Deleting, cutting,
dragging outside
the boundaries of
the parent state,
or dragging so its
boundaries overlap the
parent state

Using the undo
command

The original priority is
restored.

Dragging outside the
boundaries of the
parent state or so its
boundaries overlap
the parent state and
releasing the mouse
button

Dragging it back into
the parent state

The original priority is
lost. The Stateflow
chart treats the
restored state as the
last created and assigns
it the lowest execution
priority.

Dragging outside the
boundaries of the
parent state or so its
boundaries overlap the
parent state without
releasing the mouse
button

Dragging it back into
the parent state

The original priority is
restored.

Dragging so its
boundaries overlap
one or more sibling
states

Dragging it to a location
with no overlapping
boundaries inside the
same parent state

The original priority is
restored.

Cutting Pasting The original priority is
lost. The Stateflow
chart treats the
restored state as the
last created and assigns
it the lowest execution
priority.
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Switching Betwe en Implicit and Explicit Ordering
If you switch bac k to implicit mode after explicit ly reordering parallel states,
the Stateflow ch art resets execution order to follow implicit rules of geometry.
However, if you s witch from implicit to expli cit mode, the chart does not
restore the pre vious explicit execution order.

Whenever you sw itch from one ordering mode to another, the diagnostic
viewer alerts y ou to changes in execution priorities. Here is an example of
the types of war nings issued after switching from explicit to implicit ordering
for parallel s tates:

Ordering of Parallel States in Boxes and Subcharts
When you group a set of parallel states inside a box, they retain their relative
execution order. In addition, the Sta teflow chart assigns the box its own
priority according to whatever implici t or explicit ordering rules apply. This
priority determines when the chart activa tes the parallel states inside the box.
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When you convert a state with parallel decomposition into a subchart, its
substates retain their relative execut ion order accordin g to the prevailing
implicit or explicit rules.
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Early Return Logic for Event Broadcasts

A Stateflow ® chart uses early return logic t o resolve conflicts with event
broadcasts from state or transition actions.

The following are primary axioms of proper chart behavior:

1 Whenever a state is active, its parent should also be active.

2 A state (or chart) with exclusive (OR) decomposition must never have more
than one active child.

3 If a parallel state is active, siblings with higher priority must also be active.

Stateflow charts run on a single threa d. Therefore, charts must interrupt
current activity to process events. In so me cases, activity resulting from an
event broadcast conflicts with the cu rrent activity. Charts resolve these
conflicts by using early return logic, as in the following example:

In this example, assume that state A is initially active. Event E occurs causing
the following behavior:

1 The Stateflow chart root checks to see if there is a valid transition out of
the active state A as a result of event E.

2 A valid transition to state B is found.

3 The condition action of the valid tran sition executes and broadcasts event F.
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Event F interrupts the transition from A to B.

4 The chart root checks to see if there is a valid transition out of the active
state A as a result of event F.

5 A valid transition to state C is found.

6 State A executes its exit action.

7 State A is marked inactive.

8 State C is marked active.

9 State C executes and completes its entry action.

State C is now the only active child of its chart. The Stateflow chart cannot
return to the transition from state A to state B and continue after the condition
action that broadcast event F (step 3). First, its source, state A, is no longer
active. Second, if the chart al lowed the transition, state B would become the
second active child of the chart. This behavior violates the second axiom that
a state (or chart) with exclusive (OR) decomposition can never have more than
one active child. Consequently, the c hart uses early return logic and halts
the transition from state A to state B.

To maintain primary axiomatic behavior, a Stateflow chart uses early return
logic for event broadcasts in each of its action types as follows:

Action
Type Early Return Logic

Entry If the state is no longer active at the end of the event
broadcast, the chart does not perform remaining steps for
entering a state.

Exit If the state is no longer active at the end of the event
broadcast, the chart does not perform remaining exit actions
or transitions from state to state.

During If the state is no longer active at the end of the event
broadcast, the chart does not perform remaining steps for
executing an active state.
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Action
Type Early Return Logic

Condition If the origin state of the inner or outer flow graph — or
parent state of the default flow graph — are no longer active
at the end of the event broadcast, the chart does not perform
remaining steps for executing the flow graph.

Transition If the parent of the transition path is not active — or if that
parent has an active child — the chart does not perform
remaining transition actions and state entry actions.
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Semantic Examples

The following examples show the sem antics (behavior) of Stateflow ® charts.

“Transitions to and from Exclusive (OR) States Examples” on page
3-54

• “Transitioning from State to State with Events Example” on page 3-55

• “Transitioning from a Substate to a Substate with Events Example” on
page 3-58

“Condition Action Examples” on page 3-60

• “Condition Action Example” on page 3-60

• “Condition and Transition Actions Example” on page 3-61

• “Condition Actions in For-Loop C onstruct Example” on page 3-63

• “Condition Actions to Broadcast Even ts to Parallel (AND) States Example”
on page 3-64

• “Cyclic Behavior to Avoid with Condition Actions Example” on page 3-64

“Default Transition Examples” on page 3-66

• “Default Transition in Exclusive ( OR) Decomposition Example” on page
3-66

• “Default Transition to a Junc tion Example” on page 3-67

• “Default Transition and a Histor y Junction Example” on page 3-68

• “Labeled Default Transitions Example” on page 3-69

“Inner Transition Examples” on page 3-71

• “Processing One Event in an Exclusive (OR) State” on page 3-71

• “Processing a Second Event in an Exclusive (OR) State” on page 3-72

• “Processing a Third Event in an Exclusive (OR) State” on page 3-73
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• “Processing the First Event with a n Inner Transition to a Connective
Junction” on page 3-74

• “Processing a Second Event with an Inner Transition to a Connective
Junction” on page 3-76

• “Inner Transition to a History J unction Example” on page 3-77

“Connective Junction Examples” on page 3-79

• “If-Then-Else Decision Construct Example” on page 3-80

• “Self-Loop Transition Example” on page 3-82

• “For-Loop Construct Example” on page 3-83

• “Flow Graph Notation Example” on page 3-84

• “Transitions from a Common Source to Multiple Destinations Example”
on page 3-86

• “Transitions from Multiple Source s to a Common Destination Example”
on page 3-87

• “Transitions from a Source to a Des tination Based on a Common Event
Example” on page 3-88

“Event Actions in a Superstate Example” on page 3-91

“Parallel (AND) State Examples” on page 3-93

• “Event Broadcast State Action Example” on page 3-93

• “Event Broadcast Transition Act ion with a Nested Event Broadcast
Example” on page 3-96

• “Event Broadcast Condition Action Example” on page 3-100

Directed Event Broadcasting

• “Directed Event Broadcast Using Send Example” on page 3-105

• “Directed Event Broadcasting Using Qualified Event Names Example” on
page 3-106
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Transitions to and from Exclusive (OR) States Examples

In this section...

“Label Format for a State-to-State Transition Example” on page 3-54

“Transitioning from State to State with Events Example” on page 3-55

“Transitioning from a Substate to a Substate with Events Example” on
page 3-58

Label Format for a State-to-State Transition Example
The following example shows the general label format for a transition
entering a state.

Stateflow ® charts execute this transition as follows:

1 When an event occurs, state S1 checks for an outgoing transition with a
matching event specified.

2 If a transition with a matching event is found, the condition for that
transition ( [condition] ) is evaluated.

3 If the cond ition condition is true, the condition action condition_action
({condit ion_action} ) is executed.

4 If there is a valid transition to the dest ination state, the transition is taken.

5 State S1 is exited.
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6 The transition action transition_action is executed when the transition
is taken.

7 State S2 is entered.

Transitioning from State to State with Events Example
The following example shows the behav ior of a simple transition focusing on
the implications of whether states are active or inactive.

Processing of a First Event
Initially, the Stateflow chart is asleep. State On and state Off are OR states.
State On is active. Event E_one occurs and awakens the chart. Event E_one is
processed from the root of the chart down through the hierarchy of the chart:

1 The Stateflow chart root checks to see if there is a valid transition as a
result of E_one. A valid transition from state On to state Off is detected.

2 State On exit actions ( ExitOn() ) execute and complete.

3 State On is marked inactive.

4 The event E_one is broadcast as the transition action.

This second event E_one is processed, but because neither state is active, it
has no effect. If the second broadcast of E_one resulted in a valid transition,
it would p reempt the processing of the first broadcast of E_one. See “Early
Return Lo gic for Event Broadcasts” on page 3-49.
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5 State Off is marked active.

6 State Off entry actions ( entOff() ) execute and complete.

7 The chart goes back to sleep.

This sequence completes the execution o f the Stateflow chart associated with
event E_one when state On is initially active.

Processing of a Second Event
Using the same example, what happens when the next event, E_one, occurs
while state Off is active?

Again, initially the Stateflow chart is asleep. State Off is active. Event E_one
occurs and awakens the chart. Event E_one is processed from the root of the
chart down through the hierarchy of the chart with these steps:

1 The Stateflow chart root checks to see if there is a valid transition as a
result of E_one.

A valid transition from state Off to state On is detected.

2 State Off exit actions ( exitOff() ) execute and complete.

3 State Off is marked inactive.

4 State On is marked active.

5 State On entry actions ( entOn() ) execute and complete.
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6 The chart goes back to sleep.

This sequence completes the execution o f the Stateflow chart associated with
the second event E_one when state Off is initially active.

Processing of a Third Event
Using the same example, what happens when a third event, E_two , occurs?

Notice that the event E_two is not used explicitly in this example. However,
its occurrence (or the occurrence of any event) does result in behavior.
Initially, the Stateflow chart is asleep and state On is active.

1 Event E_two occurs and awakens the chart.

Event E_two is processed from the root of the chart down through the
hierarchy of the chart.

2 The chart root checks to see if there is a valid transition as a result of
E_two . There is none.

3 State On during actions ( durOn() ) execute and complete.

4 The chart goes back to sleep.

This sequence completes the execution o f the Stateflow chart associated with
event E_two when state On is initially active.
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Transitioning from a Substate to a Substate with
Events Example
This example shows the behavior of a transition from an OR substate to an
OR substate.

Initially, the Stateflow chart is asleep. State A.A1 is active. Event E_one occurs
and awakens the chart. Condition C_one is true. Event E_one is processed
from the root of the chart down through the hierarchy of the chart:

1 The Stateflow chart root checks to see if there is a valid transition as a
result of E_one. There is a valid transition from state A.A1 to state B.B1.
(Condition C_one is true.)

2 State A during actions ( durA() ) execute and complete.

3 State A.A1 exit actions ( exitA1() ) execute and complete.

4 State A.A1 is marked inactive.

5 State A exit actions ( exitA() ) execute and complete.

6 State A is marked inactive.

7 The transition action, A, is executed and completed.

8 State B is marked active.

9 State B entry actions ( entB() ) execute and complete.
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10 State B.B1 is marked active.

11 State B.B1 entry actions ( entB1() ) execute and complete.

12 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one .
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Condition Action Examples

In this section...

“Condition Action Ex ample” on page 3-60

“Condition and Transition Actions Example” on page 3-61

“Condition Actions in For-Loop Construct Example” on page 3-63

“Condition Acti ons to Broadcast Events to Para llel (AND) States Example”
on page 3-64

“Cyclic Behavio r to Avoid with Condition Actions Example” on page 3-64

Condition Action Example
This example shows the behavior of a si mple condition action in a multiple
segment transition.

Initially, the Stateflow ® chart is asleep. State A is active. Event E_one occurs
and awakens the chart. Conditions C_one and C_two are false. Event E_one is
processed from the root of the chart down through the hierarchy of the chart:

1 The Stateflow chart root checks to see if there is a valid transition as a
result of E_one. A valid transition segment from state A to a connective
junction is detected. The condition action A_one is detected on the valid
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transition segment and is immediat ely executed and completed. State
A is still active.

2 Because the conditions on the transitio n segments to possible destinations
are false, none of the complete transitions is valid.

3 State A during actions ( durA() ) execute and complete.

State A remains active.

4 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one when state A is initially active.

Condition and Transition Actions Example
This example shows the behavior of a si mple condition and transition action
specified on a transition from one exclusive (OR) state to another.

Initially, the Stateflow chart is asleep. State A is active. Event E_one occurs
and awakens the chart. Condition C_one is true. Event E_one is processed
from the root of the chart down through the hierarchy of the chart:

1 The Stateflow chart root checks to see if there is a valid transition as
a result of E_one. A valid transition from state A to state B is detected.
The condition C_one is true. The condition action A_one is detected on
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the valid transition and is immediately executed and completed. State
A is still active.

2 State A exit actions ( ExitA() ) execute and complete.

3 State A is marked inactive.

4 The transition action A_two is executed and completed.

5 State B is marked active.

6 State B entry actions ( entB() ) execute and complete.

7 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one when state A is initially active.
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Condition Actio ns in For-Loop Construct Example
Condition actio ns and connective junctions are used to design a for loop
construct. This example shows the use of a condition action and connective
junction to crea te a for loop construct.

See “For-Loop Construct Example” on page 3-83 to see the behavior of this
example.
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Condition Actio ns to Broadcast Events to Parallel
(AND) States Exa mple
This example sho ws how to use condition actions to broadcast events
immediately to p arallel (AND) states.

See “Event Broadcast Condition Act ion Example” on page 3-100 to see the
behavior of this example.

Cyclic Behavior to Avoid with Condition Actions
Example
This example shows a notation to avoid when using event broadcasts as
condition actions because the semantics results in cyclic behavior.
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Initially, the Stateflow chart is asleep. State On is active. Event E_one occurs
and awakens the chart. Event E_one is processed from the root of the chart
down through the hierarchy of the chart:

1 The Stateflow chart root checks to see if there is a valid transition as a
result of E_one.

A valid transition from state On to state Off is detected.

2 The condition action on the transition broadcasts event E_one.

3 Event E_one is detected on the valid transition, which is immediately
executed. State On is still active.

4 The broadcast of event E_one awakens the chart a second time.

5 Go to step 1.

Steps 1 - 5 continue to execute in a cyclical manner. The transition label
indicating a trigger on the same event as the condition action broadcast event
results in unrecoverable cyclic behavio r. This sequence never completes when
event E_one is broadcast and state On is active.
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Default Transition Examples

In this section...

“Default Transition in Exclusive (OR) Decomposition Example” on page 3-66

“Default Transition to a Junction Example” on page 3-67

“Default Transition and a History Junction Example” on page 3-68

“Labeled Default Transit ions Example” on page 3-69

Default Transition in Exclusive (OR) Decomposition
Example
This example shows a transition fro m an OR state to a superstate with
exclusive (OR) decomposition, where a default transition to a substate is
defined.

Initially, the Stateflow ® chart is asleep. State A is active. Event E_one occurs
and awakens the chart. Event E_one is processed from the root of the chart
down through the hierarchy of the chart:

1 The Stateflow chart root checks to see if there is a valid transition as a
result of E_one. There is a valid transition from state A to superstate B.

2 State A exit actions ( exitA() ) execute and complete.

3 State A is marked inactive.

4 The transition action, A, is executed and completed.
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5 State B is marked active.

6 State B entry actions ( entB() ) execute and complete.

7 State B detects a valid default transition to state B.B1.

8 State B.B1 is marked active.

9 State B.B1 entry actions ( entB1() ) execute and complete.

10 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one when state A is initially active.

Default Transition to a Junction Example
The following example shows the behavior of a default transition to a
connective junction.

Initially, the Stateflow chart is asleep. State B.B1 is active. An event occurs
and awakens the chart. Condition [ C_two ] is true. The event is processed from
the root of the chart down through the hierarchy of the chart:

1 State B checks to see if there is a valid tr ansition as a result of any event.
There is none.

2 State B1 during actions (durB1() ) execute and complete.
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This sequence completes the execution of this Stateflow chart associated with
the occurrence of any event.

Default Transition and a History Junction Example
This example shows the behavior of a su perstate with a default transition
and a history junction.

Initially, the Stateflow chart is asleep. State A is active. There is a history
junction and state B4 was the last active substate of superstate B. Event E_one
occurs and awakens the chart. Event E_one is processed from the root of the
chart down through the hierarchy of the chart:

1 The Stateflow chart root checks to see if there is a valid transition as a
result of E_one.

There is a valid transition from state A to superstate B.

2 State A exit actions ( exitA() ) execute and complete.

3 State A is marked inactive.

4 State B is marked active.
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5 State B entry actions ( entB() ) execute and complete.

6 State B uses the history junction to determ ine the substate destination of
the transition into the superstate.

The history junction indicates that substate B.B4 was the last active
substate, which becomes the destination of the transition.

7 State B.B4 is marked active.

8 State B.B4 entry actions ( entB4() ) execute and complete.

9 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one .

Labeled Default Transitions Example
This example shows the use of a default transition with a label.

Initially, the Stateflow chart is asleep. State A is active. Event E_one occurs,
awakening the chart. Event E_one is processed from the root of the chart
down through the hierarchy of the chart with the following steps:
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1 The Stateflow chart root checks to see if there is a valid transition as a
result of E_one.

There is a valid transition from state A to superstate B. The transition is
valid if event E_one or E_two occurs.

2 State A exit actions execute and complete ( exitA() ).

3 State A is marked inactive.

4 State B is marked active.

5 State B entry actions execute and complete ( entB() ).

6 State B detects a valid default transition to state B.B1. The default
transition is valid as a result of E_one.

7 State B.B1 is marked active.

8 State B.B1 entry actions execute and complete ( entB1() ).

9 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one when state A is initially active.

3-70



Inner Transition Examples

Inner Transition Examples

In this section...

“Processing Even ts with an Inner Transition in an Exclusive (OR) State
Example” on page 3-71

“Processing Events with an Inner Transition to a Connective Junction
Example” on pag e 3-74

“Inner Transit ion to a History Junction Example” on page 3-77

Processing Events with an Inner Transition in an
Exclusive (OR) State Example
This example shows what happens whe n processing three events using an
inner transition in an exclusive (OR) state.

Processing On e Event in an Exclusive (OR) State
This example shows the behavior of an inner transition.

Initially, the Stateflow ® chart is asleep. State A is active. Event E_one occurs
and awakens the chart. Condition [C_one] is false. Event E_one is processed
from the root of the chart down through the hierarchy of the chart:

1 The Stateflow chart root checks to see if there is a valid transition as a
result of E_one. A potentially valid transition from state A to state B is
detected. However, the transition is not valid, because [C_one] is false.
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2 State A during actions ( durA() ) execute and complete.

3 State A checks its children for a valid tran sition and detects a valid inner
transition.

4 State A remains active. The inner transition action A_two is executed and
completed. Because it is an inner transition, state A’s exit and entry actions
are not executed.

5 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one .

Processing a Second Event in an Exclusive (OR) State
Using the previous example, this example shows what happens when a
second event E_one occurs.

Initially, the Stateflow chart is asleep. State A is still active. Event E_one
occurs and awakens the chart. Condition [C_one] is true. Event E_one is
processed from the root of the chart down through the hierarchy of the chart
with the following steps:

1 The Stateflow chart root checks to see if there is a valid transition as a
result of E_one.

The transition from state A to state B is now valid because [C_one] is true.
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2 State A exit actions ( exitA() ) execute and complete.

3 State A is marked inactive.

4 The transition action A_one is executed and completed.

5 State B is marked active.

6 State B entry actions ( entB() ) execute and complete.

7 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one .

Processing a Third Event in an Exclusive (OR) State
Using the previous example, this example shows what happens when a third
event, E_two , occurs.

Initially, the Stateflow chart is asleep. State B is now active. Event E_two
occurs and awakens the chart. Condition [C_two] is false. Event E_two is
processed from the root of the chart down through the hierarchy of the chart:

1 The Stateflow chart root checks to see if there is a valid transition as a
result of E_two .
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A potentially valid transition from state B to state A is detected. The
transition is not valid because [C_two] is false. However, active state B has
a valid self-loop transition.

2 State B exit actions ( exitB() ) execute and complete.

3 State B is marked inactive.

4 The self-loop transition action, A_four , executes and completes.

5 State B is marked active.

6 State B entry actions ( entB() ) execute and complete.

7 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_two . This example shows the differ ence in behavior between inner
and self-loop transitions.

Processing Events with an Inner Transition to a
Connective Junction Example
This example shows the behavior of han dling repeated events using an inner
transition to a connective junction.

Processing the First Event with an Inner Transition to a
Connective Junction
This example shows the behavior of a n inner transition to a connective
junction for the first event.
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Initially, the Stateflow chart is asleep. State A1 is active. Event E_one occurs
and awakens the chart. Condition [C_two] is true. Event E_one is processed
from the root of the chart down through the hierarchy of the chart:

1 The Stateflow chart root checks to see if there is a valid transition at the
root level as a result of E_one. There is no valid transition.

2 State A during actions ( durA() ) execute and complete.

3 State A checks itself for valid transitions and detects that there is a valid
inner transition to a connective junction.

The conditions are evaluated to determine whether one of the transitions
is valid. The segments labeled with a condition are evaluated before the
unlabeled segment. The eva luation starts from a 12 o’clock position on the
junction and progresses in a clockwise manner. Because [C_two] is true,
the inner transition to the junction and then to state A.A2 is valid.

4 State A.A1 exit actions ( exitA1() ) execute and complete.

5 State A.A1 is marked inactive.

6 State A.A2 is marked active.
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7 State A.A2 entry actions ( entA2() ) execute and complete.

8 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one when condition C_two is true.

Processing a Second Event with an Inner Transition to a
Connective Junction
Continuing the previous example, this example shows the behavior of an
inner transition to a junction when a second event E_one occurs.

Initially, the Stateflow chart is asleep. State A2 is active. Event E_one occurs
and awakens the chart. Neither [C_one] nor [C_two] is true. Event E_one is
processed from the root of the chart down through the hierarchy of the chart:

1 The Stateflow chart root checks to see if there is a valid transition at the
root level as a result of E_one. There is no valid transition.

2 State A during actions ( durA() ) execute and complete.

3 State A checks itself for valid transitions and detects a valid inner
transition to a connective junction. The segments labeled with a condition
are evaluated before the unlabeled segment. The evaluation starts from
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a12 o’clock position on the junction and progresses in a clockwise manner.
Because neither [C_one] nor [C_two] is true, the unlabeled transition
segment is evaluated and is determi ned to be valid. The full transition
from the inner transition to state A.A3 is valid.

4 State A.A2 exit actions ( exitA2() ) execute and complete.

5 State A.A2 is marked inactive.

6 State A.A3 is marked active.

7 State A.A3 entry actions ( entA3() ) execute and complete.

8 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one when neither [C_one] nor [C_two] is true.

Inner Transition to a History Junction Example
This example shows the behavior of an inner transition to a history junction.

Initially, the Stateflow chart is asleep. State A.A1 is active. There is history
information because superstate A is active. Event E_one occurs and awakens
the chart. Event E_one is processed from the root of the chart down through
the hierarchy of the chart:
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1 The Stateflow chart root checks to see if there is a valid transition as a
result of E_one. There is no valid transition.

2 State A during actions execute and complete.

3 State A checks itself for valid transitions and detects that there is a valid
inner transition to a history junction. According to the behavior of history
junctions, the last active state, A.A1, is the destination state.

4 State A.A1 exit actions execute and complete.

5 State A.A1 is marked inactive.

6 State A.A1 is marked active.

7 State A.A1 entry actions execute and complete.

8 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one when there is an inner transition to a history junction and state
A.A1 is active.

3-78



Connective Junction Examples

Connective Junction Examples

In this section...

“Label Format for Transition Segments Example” on page 3-79

“If-Then-Else Decision Construct Example” on page 3-80

“Self-Loop Transition Example” on page 3-82

“For-Loop Construct Example” on page 3-83

“Flow Graph Notation Example” on page 3-84

“Transitions from a Common Source to Multiple Destinations Example”
on page 3-86

“Transitions from Multiple Sources to a Common Destination Example”
on page 3-87

“Transitions from a Source to a Destination Based on a Common Event
Example” on page 3-88

“Backtracking Behavior in Flow Graphs Example” on page 3-89

Label Format for Transition Segments Example
The general label format for a transition segment entering a junction is the
same as for transitions entering states, as shown in the following example.

Execution of a transition in this example occurs as follows:
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1 When an event occurs, state S1 is checked for an outgoing transition with
a matching event specified.

2 If a transition with a matching event is found, the transition condition for
that transition (in brackets) is evaluated.

3 If condition_1 evaluates to true, the condition action condition_action
(in braces) is executed.

4 The outgoing transitions from the junction are checked for a valid
transition. Since condition_2 is true, a valid state-to-state transition (S1
to S2) is found.

5 State S1 is exited (including execution of S1’s exit action).

6 The transition action transition_action is executed.

7 The completed state-to-state transition (S1 to S2) is taken.

8 State S2 is entered (including execution of S2’s entry action).

If-Then-Else Decision Construct Example
This example shows the behavior of an if-then-else decision construct.
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Initially , the Stateflow ® chart is asleep. State A is active. Event E_one occurs
and awaken s the chart. Condition [ C_two ] is true. Event E_one is processed
from the r oot of the chart down through the hierarchy of the chart:

1 The State flow chart root checks to see if there is a valid transition as a
result of E_one.

There is a valid transition segment from state A to the connective junction.
The transition segments beginning from a 12 o’clock position on the
connective junction are evaluated for v alidity. The first transition segment,
labeled with condition [ C_one], is not valid. The next transition segment,
labeled with the condition [ C_two ], is valid. The complete transition from
state A to state C is valid.

2 State A exit actions ( exitA() ) execute and complete.

3 State A is marked inactive.

4 State C is marked active.

5 State C entry actions ( entC() ) execute and complete.
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6 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one .

Self-Loop Transition Example
This example shows the behavior of a self -loop transition using a connective
junction.

Initially, the Stateflow chart is asleep. State A is active. Event E_one occurs
and awakens the chart. Condition [ C_one] is false. Event E_one is processed
from the root of the chart down through the hierarchy of the chart:

1 The Stateflow chart root checks to see if there is a valid transition as a
result of E_one . There is a valid transition segment from state A to the
connective junction. The transition segment labeled with a condition and
action is evaluated for validity. Because the condition [ C_one] is not valid,
the complete transition from state A to state B is not valid. The transition
segment from the connective junction back to state A is valid.

2 State A exit actions ( exitA() ) execute and complete.

3 State A is marked inactive.

4 The transition action A_two is executed and completed.

5 State A is marked active.

6 State A entry actions ( entA() ) execute and complete.
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7 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one .

For-Loop Construct Example
This example shows the behavior of a for loop using a connective junction.

Initially, the Stateflow chart is asleep. State A is active. Event E_one occurs
and awakens the Stateflow chart. Event E_one is processed from the root of
the Statef low chart down through the hierarchy of the Stateflow chart:

1 The Statef low chart root checks to see if there is a valid transition as a
result of E_one . There is a valid transition segment from state A to the
connective junction. The transition segment condition action, i = 0 , is
executed and completed. Of the two transition segments leaving the
connective junction, the transition segm ent that is a self-loop back to the
connective junction is evaluated next for validity. That segment takes
priorit y in evaluation because it has a condition specified, whereas the
other segment is unlabeled.

2 The condition [ i < 10 ] is evaluated as true. The condition actions i++ and
a call to func1 are executed and completed until the condition becomes
false. A connective junction is not a final destination; thus the transition
destination remains to be determined.

3 The unconditional segment to state B is now valid. The complete transition
from state A to state B is valid.
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4 State A exit actions ( exitA() ) execute and complete.

5 State A is marked inactive.

6 State B is marked active.

7 State B entry actions ( entB() ) execute and complete.

8 The Stateflow chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one .

Flow Graph Notation Example
This example shows the behavior of a Stateflow chart that uses flow notation.

Initially, the Stateflow chart is asleep. State A.A1 is active. The condition
[C_one()] is initially true. Event E_one occurs and awakens the chart. Event
E_one is processed from the root of the chart down through the hierarchy
of the chart:

1 The Stateflow chart root checks to see if there is a valid transition as a
result of E_one. There is no valid transition.
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2 State A checks itself for valid transitions and detects a valid inner
transition to a connective junction.

3 The next possible segments of the transition are evaluated. There is only
one outgoing transition and it has a condition action defined. The condition
action is executed and completed.

4 The next possible segments are evaluated. There are two outgoing
transitions; one is a conditional sel f-loop transition and the other is an
unconditional transition segment. Th e conditional transition segment
takes precedence. The condition [C_one()] is tested and is true; the
self-loop transition is taken. Since a final transition destination has not
been reached, this self-loop continues until [C_one()] is false.

Assume that after five iterations [C_one()] is false.

5 The next possible transition segment (to the next connective junction) is
evaluated. It is an unconditional tr ansition segment with a condition
action. The transition segment is taken and the condition action,
{d=my_func()} , is executed and completed. The returned value of d is 84.

6 The next possible transition segment is evaluated. There are three
possible outgoing transition segmen ts to consider. Two are conditional;
one is unconditional. The segment labeled with the condition [d<100]
is evaluated first based on the geometry of the two outgoing conditional
transition segments. Because the return value of d is 84, the condition
[d<100] is true and this transition ( to the destination state A.A1 ) is valid.

7 State A.A1 exit actions ( exitA1() ) execute and complete.

8 State A.A1 is marked inactive.

9 State A.A1 is marked active.

10 State A.A1 entry actions ( entA1() ) execute and complete.

11 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one .

3-85



3 Stateflow® Chart Semantics

Transitions from a Common Source to Multiple
Destinations Example
This example shows the behavior of transitions from a common source to
multiple conditional destinations using a connective junction.

Initially, the Stateflow chart is asleep. State A is active. Event E_two occurs
and awaken s the chart. Event E_two is processed from the root of the chart
down throu gh the hierarchy of the chart:

1 The Statef low chart root checks to see if there is a valid transition as a
result of E_two . There is a valid transition segment from state A to the
connective junction. Given that the transition segments are equivalently
labeled, evaluation begins from a 12 o’clock position on the connective
junction and progresses clockwise. The first transition segment, labeled
with eve nt E_one, is not valid. The next transition segment, labeled with
event E_two , is valid. The complete transition from state A to state C is
valid.

2 State A exit actions ( exitA() ) execute and complete.

3 State A is marked inactive.

4 State C is marked active.

5 State C entry actions ( entC() ) execute and complete.

6 The chart goes back to sleep.

3-86



Connective Junction Examples

This sequence completes the execution of this Stateflow chart associated with
event E_two .

Transitions from Multiple Sources to a Common
Destination Example
This example shows the behavior of transitions from multiple sources to a
single destination using a connective junction.

Initially, the Stateflow chart is asleep. State A is active. Event E_one occurs
and awaken s the chart. Event E_one is processed from the root of the chart
down throu gh the hierarchy of the chart:

1 The Statef low chart root checks to see if there is a valid transition as a
result of E_one . There is a valid transition segment from state A to the
connective junction and from the junction to state C.

2 State A exit actions ( exitA() ) execute and complete.

3 State A is marked inactive.

4 State C is marked active.

5 State C entry actions ( entC() ) execute and complete.

6 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one .
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Transitions from a Source to a Destination Based on
a Common Event Example
This example shows the behavior of transitions from multiple sources to a
single destination based on the sam e event using a connective junction.

Initially, the Stateflow chart is asleep. State B is active. Event E_one occurs
and awakens the chart. Event E_one is processed from the root of the chart
down through the hierarchy of the chart:

1 The Stateflow chart root checks to see if there is a valid transition as a
result of E_one . There is a valid transition segment from state B to the
connective junction and fro m the junction to state C.

2 State B exit actions ( exitB() ) execute and complete.

3 State B is marked inactive.

4 State C is marked active.

5 State C entry actions ( entC() ) execute and complete.

6 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one .
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Backtracking Be havior in Flow Graphs Example
This example sho ws the behavior of transitions with junctions that force
backtracking be havior in flow graphs.

Initially, s tate A is active and conditions c1 , c2 , and c3 are true:

1 The Stateflo w chart root checks to see if there is a valid transition from
state A.

There is a valid transition segment marked with the condition c1 from
state A to a connective junction.

2 Condition c1 is true; therefore action a1 is executed.

3 Condition c3 is true; therefore action a3 is executed.

4 Condition c4 is not true; therefore control flow is backtracked to state A.

5 The chart root checks to see if there is another valid transition from state A.

There is a va lid transition segment marked with the condition c2 from
state A to a connective junction.

6 Condition c2 is true; therefore action a2 is executed.

7 Condition c3 is true; therefore action a3 is executed.

8 Condition c4 is not true; therefore control flow is backtracked to state A.

9 The chart goes to sleep.
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The preceding example shows the unanticipated behavior of executing both
actions a1 and a2 and executing action a3 twice. To resolve this problem,
consider this design.

This example provides two junctions that allow flow to end if either c3 or c4 is
not true. This leaves state A active without taking any unnecessary actions.
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Event Actions in a Superstate Example

The following example shows the use of event actions in a superstate.

Initially, the Stateflow ® chart is asleep. State A.A1 is active. Event E_three
occurs and awakens the chart. Event E_three is processed from the root of
the chart down through the hierarchy of the chart:

1 The Stateflow chart root checks to see if there is a valid transition as a
result of E_three . There is no valid transition.

2 State A during actions ( durA() ) execute and complete.

3 State A executes and completes the on event E_three action ( A_one).

4 State A checks its children for valid transitions. There are no valid
transitions.

5 State A1 during actions ( durA1() ) execute and complete.

6 The chart goes back to sleep.
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This sequence completes the execution of this Stateflow chart associated
with event E_three .
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Parallel (AND) State Examples

In this section...

“Event Broadcast State Action Example” on page 3-93

“Event Broadcast Transition Act ion with a Nested Event Broadcast
Example” on page 3-96

“Event Broadcast Condition Action Example” on page 3-100

Event Broadcast State Action Example
This example shows the behavior of event broadcast actions in parallel states.

Initially, theStateflow ® chart is asleep. Parallel substates A.A1.A1a and
A.A2.A2a are active. Event E_one occurs and awakens the chart. Event E_one
is processed from the root of the chart down through the hierarchy of the chart:
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1 The Stateflow chart root checks to see if there is a valid transition at the
root level as a result of E_one. There is no valid transition.

2 State A during actions (durA() ) execute and complete.

3 State A’s children are parallel (AND) states. They are evaluated and
executed from left to right and top to bottom. State A.A1 is evaluated first.
State A.A1 during actions (durA1() ) execute and complete. State A.A1
executes and completes the on E_one action and broadcasts event E_two .
during and on event_name actions are processed based on their order of
appearance in th e state label:

a The broadcast of event E_two awakens the chart a second time. The
chart root checks to see if there is a valid transition as a result of E_two .
There is no valid transition.

b State A during actions (durA() ) execute and complete.

c State A checks its children for valid transitions. There are no valid
transitions.

d State A’s children are evaluated starting with state A.A1 . State A.A1
during actions (durA1() ) execute and complete. State A.A1 is evaluated
for valid transitions. There are no valid transitions as a result of E_two
within state A1.

e State A1a’s during actions (durA1a() ) execute.

f State A.A2 is evaluated. State A.A2 during actions (durA2() ) execute
and complete. State A.A2 checks for valid transitions. State A.A2 has
a valid transition as a result of E_two from state A.A2 .A2a to state
A.A2.A2b .

g State A.A2.A2a exit actions (exitA2a() ) execute and complete.

h State A.A2.A2a is marked inactive.

i State A.A2.A2b is marked active.

j State A.A2.A2b entry actions (entA2b() ) execute and complete. This
diagram shows the Stateflow chart activity.
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4 State A.A1.A1a executes and completes exit actions (exitA1a ).

5 The processing of E_one continues once the on event broadcast of E_two
has been processed. State A.A1 checks for any valid transitions as a result
of event E_one . There is a valid transition from state A.A1.A1a to state
A.A1.A1b .

6 State A.A1.A1a is marked inactive.

7 State A.A1.A1b entry actions (entA1b() ) execute and complete.

8 State A.A1.A1b is marked active.

9 Parallel state A.A2 is evaluated next. State A.A2 during actions (durA2() )
execute and complete. There are no valid transitions as a result of E_one.

10 State A.A2.A2b during actions (durA2b() ) execute and complete.

State A.A2.A2b is now active as a result of the processing of the on event
broadcast of E_two .
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11 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one and the on event broadcast to a parallel state of event E_two .
This diagram shows the final chart activity.

Event Broadcast Transition Action with a Nested
Event Broadcast Example
This example shows the behavior of an eve nt broadcast transition action that
includes a nested event broadcast in a parallel state.

3-96



Parallel (AND) State Examples

Start of Event E_one Processing
Initially, the Stateflow chart i s asleep. Parallel substates A.A1.A1a and
A.A2.A2a are active. Event E_one occurs and awakens the chart. Event E_one
is processed from the root of the chart down through the hierarchy of the chart:

1 The chart root checks to see if there is a valid transition as a result of
E_one. There is no valid transition.

2 State A during actions (durA() ) execute and complete.

3 State A’s children are parallel (AND) states. They are evaluated and
executed from left to right and top to bottom. State A.A1 is evaluated first.
State A.A1during actions (durA1() ) execute and complete.

4 State A.A1 checks for any valid transitions as a result of event E_one.
There is a valid transition from state A.A1.A1a to state A.A1.A1b .

5 State A.A1.A1a executes and completes exit actions (exitA1a ).
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6 State A.A1.A1a is marked inactive.

Event E_two Preempts E_one

7 Transition action generating event E_two is executed and completed:

a The broadcast of event E_two now preempts the transition from state
A1a to state A1b (triggered by event E_one) .

b The broadcast of event E_two awakens the Stateflow chart a second time.
The chart root checks to see if there is a valid transition as a result of
E_two . There is no valid transition.

c State A during actions (durA() ) execute and complete.

d State A’s children are evaluated starting with state A.A1 . State
A.A1during actions (durA1() ) execute and complete. State A.A1 is
evaluated for valid transitions. There are no valid transitions as a result
of E_two within state A1.

e State A.A2 is evaluated. State A.A2 during actions (durA2() ) execute and
complete. State A.A2 checks for valid transitions. State A.A2 has a valid
transition as a result of E_two from state A.A2.A2a to state A.A2.A2b .

f State A.A2.A2a exit actions (exitA2a() ) execute and complete.

g State A.A2.A2a is marked inactive.

h State A.A2.A2b is marked active.

i State A.A2.A2b entry actions (entA2b() ) execute and complete.

Event E_two Processing Ends
The following diagram shows Stateflow chart activity.
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Event E_one Processing Resumes

8 State A.A1.A1b is marked active.

9 State A.A1.A1b entry actions ( entA1b() ) execute and complete.

10 Parallel state A.A2 is evaluated next. State A.A2 during actions ( durA2() )
execute and complete. There are no valid transitions as a result of E_one.

11 State A.A2.A2b during actions ( durA2b() ) execute and complete.

State A.A2.A2b is now active as a result of the processing of the transition
action event broadcast of E_two .

12 The chart goes back to sleep.
This sequence completes the execution of this Stateflow chart associated with
event E_one and the transition action event b roadcast to a parallel state of
event E_two . This diagram shows the final chart activity.
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Event Broadcast Condition Action Example
This example shows the behavior of a condition action event broadcast in a
parallel (AND) state.
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Initially, the Stateflow chart i s asleep. Parallel substates A.A1.A1a and
A.A2.A2a are active. Event E_one occurs and awakens the chart. Event E_one
is processed from the root of the chart down through the hierarchy of the chart:

1 The Stateflow chart root checks to see if there is a valid transition as a
result of E_one. There is no valid transition.

2 State A during actions (durA() ) execute and complete.

3 State A’s children are parallel (AND) states. Parallel states are evaluated
and executed from top to bottom. In th e case of a tie, they are evaluated
from left to right. State A.A1 is evaluated first. State A.A1 during actions
(durA1() ) execute and complete.

4 State A.A1 checks for any valid transitions as a result of event E_one.
There is a valid transition from state A.A1.A1a to state A.A1.A1b . There is
also a valid condition action. The c ondition action event broadcast of E_two
is executed and completed. State A.A1.A1a is still active:
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a The broadcast of event E_two awakens the Stateflow chart a second time.
The chart root checks to see if there is a valid transition as a result of
E_two . There is no valid transition.

b State A during actions (durA() ) execute and complete.

c State A’s children are evaluated starting with state A.A1 . State A.A1
during actions (durA1() ) execute and complete. State A.A1 is evaluated
for valid transitions. There are no valid transitions as a result of E_two
within state A1.

d State A1a during actions (durA1a() ) execute.

e State A.A2 is evaluated. State A.A2 during actions (durA2() ) execute
and complete. State A.A2 checks for valid transitions. State A.A2 has
a valid transition as a result of E_two from state A.A2.A2a to state
A.A2.A2b .

f State A.A2.A2a exit actions (exitA2a() ) execute and complete.

g State A.A2.A2a is marked inactive.

h State A.A2.A2b is marked active.

i State A.A2.A2b entry actions (entA2b() ) execute and complete.
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5 State A.A1.A1a executes and completes exit actions (exitA1a ).

6 State A.A1.A1a is marked inactive.

7 State A.A1.A1b entry actions (entA1b() ) execute and complete.

8 State A.A1.A1b is marked active.

9 Parallel state A.A2 is evaluated next. State A.A2 during actions (durA2() )
execute and complete. There are no valid transitions as a result of E_one.

10 State A.A2.A2b during actions (durA2b() ) execute and complete.

State A.A2.A2b is now active as a result of the processing of the condition
action event broadcast of E_two .

11 The chart goes back to sleep.
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This sequence completes the execution of this Stateflow chart associated with
event E_one and the condition action event broadcast to a parallel state of
event E_two . This diagram shows the final chart activity.
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Directed Event Broadcasting Examples

In this section...

“Directed Event Broadcast Using Send Example” on page 3-105

“Directed Event Broadcasting Using Qualified Event Names Example” on
page 3-106

Directed Event Broadcast Using Send Example
This example shows the behavior of d irected event broadcast using the
send(event_name,state_name) function in a transition action.

Initially, the Stateflow ® chart is asleep. Parallel substates A.A1 and B.B1
are active, which implies that parallel (AND) superstates A and B are also
active. An event occurs and awakens the chart. The condition [data1==1]
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is true. The event is processed from the root of the chart down through the
hierarchy of the chart:

1 The Stateflow chart root checks to see if there is a valid transition as a
result of the event. There is no valid transition.

2 State A checks for any valid transitions as a result of the event. Because
the condition [data1==1] is true, there is a valid transition from state
A.A1 to state A.A2 .

3 State A.A1 exit actions ( exitA1() ) execute and complete.

4 State A.A1 is marked inactive.

5 The transition action send(E_one,B) is executed and completed:

a The broadcast of event E_one is a nested event that awakens state B.
Because state B is active, the directed broadcast is received and state B
checks to see if there is a valid transition. There is a valid transition
from B.B1 to B.B2 .

b State B.B1 exit actions (exitB1() ) execute and complete.

c State B.B1 is marked inactive.

d State B.B2 is marked active.

e State B.B2 entry actions (entB2()) execute and complete.

6 State A.A2 is marked active.

7 State A.A2 entry actions ( entA2() ) execute and complete.

This sequence completes the execution of this Stateflow chart associated with
an event broadcast and the directed ev ent broadcast to a parallel state of
event E_one .

Directed Event Broadcasting Using Qualified Event
Names Example
This example shows the behavior of direc ted event broadcast using a qualified
event name in a transition action.
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Initiall y, the Stateflow chart is asleep. Parallel substates A.A1 and B.B1 are
active, implying that parallel (AND) superstates A and B are also active. An
event occurs and awakens the chart. The condition [data1==1] is true. The
event is processed from the root of the chart down through the hierarchy
of the chart:

1 The Sta teflow chart root checks to see if there is a valid transition as a
result of the event. There is no valid transition.

2 State A checks for any valid transitions as a result of the event. Because
the condition [data1==1] is true, there is a valid transition from state
A.A1 to state A.A2 .

3 State A.A1 exit actions ( exitA1() ) execute and complete.

4 State A.A1 is marked inactive.
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5 The transition action, a qua lified broadcast of event E_one to state B (
represented by the notation B.E_one ), is executed and completed:

a The broadcast of event E_one is a nested event broadcast that awakens
state B. Because state B is active, the directed broadcast is received
and state B checks to see if there is a valid transition. There is a valid
transition from B.B1 to B.B2 .

b State B.B1 exit actions (exitB1() ) execute and complete.

c State B.B1 is marked inactive.

d State B.B2 is marked active.

e State B.B2 entry actions (entB2() ) execute and complete.

6 State A.A2 is marked active.

7 State A.A2 entry actions ( entA2() ) execute and complete.

This sequence completes the execution of this Stateflow chart associated with
an event broadcast using a qualified event name to a parallel state.
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4

Creating Stateflow ® Charts

Creating a Stateflow ® Chart (p. 4-2) Gives a step-by-step procedure for
creating an empty Stateflow ® chart

Working with States in Stateflow ®

Charts (p. 4-5)
Describes how to create and specify
a state in your new chart. Stateflow
charts react to events by changing
states, which are modes of a chart

Working with Transitions in
Stateflow ® Charts (p. 4-16)

Describes how to create, move,
change, and specify properties for
Stateflow transitions. Charts change
active states using pathways called
transitions.

Creating Flow Graphs with
Connective Junctions (p. 4-25)

Describes how to create, move, and
specify properties for Stateflow
junctions. Junctions provide decision
points between alt ernate transition
paths. History junctions record the
activity of states inside states.

Using the Stateflow ® Editor (p. 4-28) Describes each part of the Stateflow
Editor window that displays the
chart you create. Shows you how to
customize Stateflow Editor menus.
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Creating a Stateflow ® Chart

You build a chart with Stateflow ® objects. You create charts by adding them to
a Simulink ® model. Create a Stateflow chart in a Simulink model with the
following steps:

1 Enter sfnew or stateflow at the MATLAB ® command prompt to create a
new empty model with a Stateflow chart.

The stateflow command also displays the S tateflow block library.

You can drag and drop additional charts in your Simulink system from this
library in case you want to create multiple charts in your model. You can
also drag and drop new charts into existing systems from the Stateflow
library in the Simulink Library Browser. For information on creating your
own chart libraries, see “Creating Chart Libraries” on page 13-28.
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2 Open the chart by double-clicking the Chart block.

The empty chart appears in the Stateflow Editor.

3 Open the Chart properties dialog box.

See “Setting Properties for Individual Charts” on page 13-6.

4 In the Chart properties dialog box, select a chart type from the drop-down
menu in the State Machine Type field:

Type Descript ion

Classic The defau lt machine type. Provides the full set of
Stateflo w chart semantics (see Chapter 3, “Stateflow ®

Chart Se mantics”).

Mealy Machine type in which output is a function of inputs and
state.

Moore Machine type in which output is a function only of state.

4-3



4 Creating Stateflow® Charts

Mealy and Moore charts use a subset of Stateflow chart semantics. For
more information, see Chapter 5, “Building Mealy and Moore Charts”.

5 In the Chart properties dialog box, sp ecify an update method for the chart
in the Update method field.

This value determines when and how often the chart is called during the
execution of the Simulink model.

6 Use the Stateflow Editor to draw a Stateflow chart.

See “Using the Stateflow ® Editor” on page 4-28 and the rest of this chapter
for more information on how to draw Stateflow charts.

7 Interface the chart to other blocks in your Simulink model, using events
and data.

See Chapter 8, “Defining Events” , Chapter 7, “Defining Data”, and
Chapter 13, “Defining Interfaces to Simulink ® Models and the MATLAB ®

Workspace” for more information.

8 Rename and save the model by selecting Save Model As from the
Stateflow Editor menu or Save As from the Simulink menu.

Note Trying to save a model with more than 25 characters produces an
error. Loading a model with more tha n 25 characters produces a warning.
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Working with States in Stateflow ® Charts

In this section...

“Creating a State” on page 4-5

“Moving and Resizing States” on page 4-7

“Creating Substates and Superstates” on page 4-7

“Grouping States” on page 4-8

“Specifying Substate Decomposition” on page 4-8

“Specifying Activation Order fo r Parallel States” on page 4-9

“Changing State Properties” on page 4-9

“Labeling States” on page 4-11

“Outputting State Activity to a Simulink ® Model” on page 4-14

Creating a State
You create states by drawing them in the Stateflow ® Editor for a particular
Stateflow chart (block). The following is a depiction of the Stateflow Editor:
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1 Select the State tool.

2 Move your pointer into the drawing area.

In the drawing area, the pointer becom es state-shaped (rectangular with
oval corners).

3 Click in a particular location to create a state.

The created state appears with a question mark (?) label in its upper
left-ha nd corner.

4 Click the question mark.

A text cursor appears in place of the question mark.

5 Enter a n ame for the state and click outside of the state when finished.
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The label for a state specifies its required name and optional actions. See
“Labeling States” on page 4-11 for more detail.

To delete a state, click it to select it and choose Cut from the Edit or any
shortcut menu or press the Delete key.

Moving and Resizing States
To move a state, do the following:

1 Click and drag the state.

2 Release it in a new position.

To resize a state, do the following:

1 Place your pointer over a corner of the state.

When your pointer is over a corner, i t appears as a double-ended arrow (PC
only; pointer appearance varies with other platforms).

2 Click and drag the state’s corner to re size the state and release the left
mouse button.

Creating Substates and Superstates
A substate is a state that can be active only when another state, called its
parent, is active. States that have substates are known as superstates. To
create a substate, click the State to ol and drag a new state into the state
you want to be the superstate. A Stateflow chart creates the substate in the
specified parent state. You can nest states in this way to any depth. To
change a substate’s parentage, drag it from its current parent in the chart
and drop it in its new parent.

Note A parent state must be graphicall y large enough to accommodate all
its substates. You might need to resize a parent state before dragging a new
substate into it. You can bypass the need for a state of large graphical size
by declaring a superstate to be a subch art. See “Using Subcharts to Extend
Charts” on page 6-6 for details.
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Grouping States
Grouping a state causes a Stateflow chart to treat the state and its contents
as a graphical unit. This simplifies editing a chart. For example, moving a
grouped state moves all its substates as well.

To group a state, double-click the state or its border.

The grouped state thickens its border and grays its contents to indicate that
it is grouped.

You can also group a state by right-clicking it and then selecting Make
Contents and then Grouped from the resulting shortcut menu.

You must ungroup a superstate to select objects within the superstate. To
ungroup a state, double-click it or its border or select Ungrouped from the
Make Contents shortcut menu.

Specifying Substate Decomposition
You specify whether a superstate contai ns parallel (AND) states or exclusive
(OR) states by setting its decompositi on. A state whose substates are all
active when it is active has parallel (AND) decomposition. A state in which
only one substate is active when it is active has exclusive (OR) decomposition.
An empty state’s decomposition is exclusive.

To alter a state’s decomposition, selec t the state, right-click to display the
state’s shortcut menu, and choose either Parallel (AND) or Exclusive (OR)
from the menu.

You can also specify the state decompo sition of a chart. In this case, the
Stateflow chart treats its top-level states as substates. The chart creates
states with exclusive decomposition. To specify a chart’s decomposition,
deselect any selected objects, right-click to display the chart’s shortcut menu,
and choose either Parallel (AND) or Exclusive (OR) from the menu.

The appearance of a superstate’s sub states indicates the superstate’s
decomposition. Exclusive substates have solid borders, parallel substates,
dashed borders. A parallel substate also contains a number in its upper right
corner. The number indicates the activat ion order of the substate relative to
its sibling substates.
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Specifying Activation Order for Parallel States
You specify the activation order of para llel states by arranging them from top
to bottom and left to right. A Stateflow c hart activates the states in the order
in which you arrange them. In particular , a top-level parallel state activates
before all the states whose top edges reside at a lower level in the chart. A
top-level parallel state also activates b efore any other state that resides to the
right of it at the same vertical level in the chart. The same top to bottom, left
to right activation order applies to parallel substates of a state.

Note A Stateflow chart displays the activation order of a parallel state in
its upper right corner.

Changing State Properties
Use the State dialog box to view and change the properties for a state. To
access the State dialog for a part icular state, do the following:

1 Right-click the state.

A shortcut pop-up menu appears.

2 Choose Properties from the shortcut menu.

The State dialog for the state appears as shown.
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The State dialog contains the following properties for a state:

Field Description

Name Stateflow chart name; read-only; click this hypertext
link to bring the state to the foreground.

Debugger
breakpoints

Click the check boxes to set debugging breakpoints
on the execution of state entry , during , or exit
actions during simulation. See Chapter 19,
“Debugging and Testing” for more information.

Test point Select this check box to set the state as a test point
that can be monitored with a floating scope during
model simulation. You can also log test point values
into MATLAB ® workspace objects. See “Monitoring
Test Points in Stateflow ® Charts” on page 19-38 in
the online Stateflow so ftware documentation.
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Field Description

Output State
Activity

Select this check box to cause the Stateflow chart
to output the activity status of this state to a
Simulink ® model via a data output port on the Chart
block containing the stat e. See “Outputting State
Activity to a Simulink ® Model” on page 4-14 for more
information.

Label The label for the state. This includes the name of
the state and its associated actions. See the section
titled “Labeling S tates” on page 4-11 for detailed
information.

Description Textual description/comment.

Document Link Enter a URL address or a general MATLAB
command. Examples are www.mathworks.com ,
mailto:email_address , and edit
/spec/data/speed.txt .

3 After making changes, select one of these options:

• Apply to save the changes and keep the State dialog open.

• Cancel to return to the previous settings

• OK to save the changes and close the dialog box

• Help to display the documentation in an HTML browser window.

Labeling States
The label for a state specifies its required name for the state and the optional
actions executed when the state is enter ed, exited, or receives an event while
it is active.

State labels have the following general format.

name/
entry: entry actions
during: during actions
exit: exit actions
bind: data and events
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on event_name: on event_name actions

The italicized entries in this form at have the following meanings:

Keyword Entry Description

NA name A unique reference to th e state with optional
slash

entry or en entry actions Actions executed when a particular state is
entered as the result of a transition taken
to that state

during or
du

during actions Actions that are executed when a state
receives an event while it is active with no
valid transition away from the state

exit or ex exit actions Actions executed when a state is exited as
the result of a transition taken away from
the state

bind data or events Binds the specified data or events to this
state. Bound data can be changed only by
this state or its children, but can be read by
other states. Bound events can be broadcast
only by this state or its children.

on event_name

and

on event_name
actions

A specified event

and

Actions executed when a state is active and
the specified event event_name occurs

See “Adding Events” on page 8-2 for
information on defining and using events.

Entering the Name
Initially, a state’s label is empty. The Stateflow chart indicates this by
displaying a ? in the state’s label posit ion (upper left corner). Begin labeling
the state by entering a name for the state with the following steps:

1 Click the state.
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The state turns to its highlight col or and a question mark character
appears in the upper left-hand corner of the state.

2 Click the ? to edit the label.

An editing cursor appears. You are now free to type a label.

Enter the state’s name in the first line of the state’s label. Names are
case sensitive. To avoid naming confl icts, do not assign the same name to
sibling states. However, you can a ssign the same name to states that do
not share the same parent.

If you are finished labeling the state, click outside of the state. Otherwise,
continue entering actions. To reedit the label, simply click the label text
near the character position you want to edit.

Entering Actions
After entering the name of the state in th e state’s label, you can enter actions
for any of the following action types:

• Entry Actions — begin on a new line with the keyword entry or en,
followed by a colon, followed by one or more action statements on one or
more lines. To separate multiple actions on the same line, use a comma
or a semicolon.

You can begin entry actions on the same line as the state’s name. In this
case, begin the entry action with a forward slash (/) instead of the entry
keyword.

• Exit Actions — begin on a new line with the keyword exit or ex , followed
by a colon, followed by one or more action statements on one or more lines.
To separate multiple actions on the same line, use a comma or a semicolon.

• During Actions — begin on a new line with the keyword entry or en,
followed by a colon, followed by one or more action statements on one or
more lines. To separate multiple actions on the same line, use a comma
or a semicolon.

• Bind Actions — begin on a new line with the keyword bind followed by
a colon, followed by one or more data or events on one or more lines. To
separate multiple actions on the same line, use a comma or a semicolon.
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• On <event_name> Actions — begin with the keyword on, followed by a
space and the name of an event, followed by a colon, followed by one or
more action statements on one or more lines, for example

on ev1: exit();

To separate multiple actions on the same line, use a comma or a semicolon.
If you want different events to trigge r different actions, enter multiple
on event_name blocks in the state’s label, each specifying the action for a
particular event or set of events, for example:

on ev1: action1(); on ev2: action2();

Note The execution of the actions you enter for a state is dependent only on
their action type, and not on the order in which you enter them in the label.

You can also edit the state’s label throu gh the properties dialog for the state.
See “Changing State Properties” on page 4-9.

Outputting State Activity to a Simulink ® Model
You can output the activity of a chart’s states to a Simulink model via a
data port on the state’s Chart block. To enable output of a particular state’s
activity, first name the state (see “E ntering the Name” on page 4-12), if
unnamed, and then select the Output State Activity check box on the state’s
property dialog (see “Changing State Properties” on page 4-9). A data output
port appears on the Chart block containing the state. The port has the same
name as the state. During simulation of a model, the port outputs 1 at each
time step in which the state is active; 0, otherwise. Attaching a scope to the
port allows you to monitor a state’s acti vity visually during the simulation.
See “Sharing Input and Output Data with Simulink ® Models” on page 7-28
for more information.
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Note If a chart has multiple states with the same name, only one of those
states can output activity data. If you check the Output State Activity
property for more than one state with the same name, the chart outputs
data only from the first state whose Output State Activity property you
specified.
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Working with Transitions in Stateflow ® Charts

In this section...

“Creating a Transition” on page 4-16

“Creating Straight Transitions” on page 4-17

“Labeling Transitions” on page 4-18

“Moving Transitions” on page 4-19

“Changing Transition Arrowhead Size” on page 4-21

“Creating Self-Loop Transitions” on page 4-21

“Creating Default Transitions” on page 4-22

“Changing Transition Properties” on page 4-23

Creating a Transition
Use the following procedure for creat ing transitions between states and
junctions:

1 Place your pointer on or close to the border of a source state or junction.

The pointer changes to crosshairs.

2 Click and drag a transition to a destination state or junction.

3 Release on the border of the destination state or junction.

Notice that the source of th e transition sticks to the initial source point
for the transition.
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Attached transitions obey the following rules:

• Transitions do not attach to the corners of states. Corners are used
exclusively for resizing.

• Transitions exit a source and enter a des tination at angles perpendicular to
the source or destination surface.

• Newly created transitions have smart behavior. See “Setting Smart
Behavior in Transitions” on page 6-18.

To delete a transition, select it and choose Cut from the Edit menu, or press
the Delete key.

See the following sections for help with creating self-loop and default
transitions:

• “Creating Self-Loop Transitions” on page 4-21

• “Creating Default Transitions” on page 4-22

Creating Straight Transitions
While creating a transition, notice tha t the source of the transition sticks to
the initial source point. This often res ults in a curved transition. To create
a perfectly straight transition, while clicking and dragging from one state
to another, do one of the following:

• Press the S key (works on all platforms).

• Right-click the mouse (works on most platforms).

Either of these actions straightens t he transition perp endicular to the
transition’s source state or junctio n surface, if possible, and allows the
transition source point to slide to maintain straightness. For states, if your
pointer is out of range of perpendicularity with the source state, the transition
is unaffected.
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Labeling Transi tions
Transition labe ls contain Stateflow ® action language that accompanies the
execution of a tr ansition. Creating and editing transition labels is described
in the following topics:

• “Editing Trans ition Labels” on page 4-18

• “Transition Lab el Format” on page 4-18

For more informa tion on transition co ncepts, see “Transit ion Label Notation”
on page 2-14.

For more inform ation on transition label contents, see Chapter 9, “Using
Actions in Stat eflow® Charts”.

Editing Transition Labels
Label unlabele d transitions as follows:

1 Select (left- click) the transition.

The transition turns to its highlight color and a question mark (?) appears
on the transition. The ? character is the default empty label for transitions.

2 Left-click the ? to edit the label.

You can now typ e a label.

To apply and ex it the edit, deselect the objec t. To reedit the label, simply
left-click t he label text near the character position you want to edit.

Transition Label Format
Transition l abels have the following general format:

event [condition]{condition_action}/transition_action

Specify, as appropriate, relevant names for event , condition ,
condition_a ction , and transition_action .
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Label Field Description

event Event that causes the transition to be evaluated.

condition Defines what, if anything, has to be true for the
condition action and transition to take place.

condition_action If the condition is true, the action specified executes
and completes.

transition_action This action executes after the source state for the
transition is exited but before the destination state
is entered.

Transitions do not have to have labels. You can specify some, all, or none of
the parts of the label. Valid transition labels are defined by the following:

• Can have any alphanumeric and special character combination, with the
exception of embedded spaces

• Cannot begin with a numeric character

• Can have any length

• Can have carriage returns in most cases

• Must have an ellipsis (...) to continue on the next line

Moving Transitions
You can move transition lines with a combination of several individual
movements. These movements are described in the following topics:

• “Bowing the Transition Line” on page 4-20

• “Moving Transition Att ach Points” on page 4-20

• “Moving Transition Labels” on page 4-20

In addition, transitions move along with the movements of states and
junctions. See “Setting Smart Behavior in Transitions” on page 6-18 for a
description of smart and nonsmart transition behavior.
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Bowing the Transition Line
You can move or "bow" transition lines with the following procedure:

1 Place your pointer on the transition at a ny point along the transition except
the arrow or attach points.

2 Click and drag your pointer to move the transition point to another location.

Only the transition line moves. The arrow and attachment points do not
move.

3 Release the mouse button to specify the transition point location.

The result is a bowed transition line. Repeat the preceding steps to move the
transition back into its origina l shape or into another shape.

Moving Transition Attach Points
You can move the source or end points o f a transition to place them in exact
locations as follows:

1 Place your pointer over an attach point until it changes to a small circle.

2 Click and drag your pointer to move the attach point to another location.

3 Release the mouse button to specify the new attach point.

The appearance of the transition chan ges from a solid to a dashed line when
you detach and release a destination attach point. Once you attach the
transition to a destination, the da shed line changes to a solid line.

The appearance of the transition changes to a default transition when you
detach and release a source attach poin t. Once you attach the transition to a
source, the appearance returns to normal.

Moving Transition Labels
You can move transition labels to make the Stateflow chart more readable. To
move a transition label, do the following:

1 Click and drag the label to a new location.
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2 Release the left mouse button.

If you mistakenly click and then immedi ately release the left mouse button on
the label, you will be in edit mode for the label. Press the Esc key to deselect
the label and try again. You can also click the mouse on an empty location in
the Stateflow Editor to deselect the label.

Changing Transition Arrowhead Size
The arrowhead size is a property of the destination object. Changing one of
the incoming arrowheads of an object ca uses all incoming arrowheads to that
object to be adjusted to the same size. The arrowhead size of any selected
transitions, and any other transitions ending at the same object, is adjusted.

To adjust arrowhead size from the Transition shortcut menu:

1 Select the transitions whose arrowhead size you want to change.

2 Place your pointer over a selected trans ition and right-click to display the
shortcut menu.

A menu of arrowhead sizes appears.

3 Select an arrowhead size from the menu.

To adjust arrowhead size from the Junction shortcut menu:

1 Select the junctions whose incoming arrowhead size you want to change.

2 Place your pointer over a selected junction and right-click.

3 In the resulting submenu, place your pointer over Arrowhead Size.

A menu of arrowhead sizes appears.

4 Select a size from the menu.

Creating Self-Loop Transitions
A self-loop transition is a transition whose source and destination are the
same state or junction.
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The following is an example o f a self-loop transition:

To create a self-loop transit ion, follow these steps:

1 Create the transition as usual by clicking and dragging it out from the
source state or junction.

2 Continue dragging the transition tip back to a location on the source state
or junction.

For the semantics of self-loops, see “Self-Loop Transitions” on page 2-20.

Creating Default Transitions
A default transition is a transition with a destination (a state or a junction),
but no apparent source object. See “Def ault Transitions” on page 1-12 for an
explanation of default transitions.

Click the Default Transition button in the toolbar and click a location in
the drawing area close to the state or junction you want to be the destination
for the default transition. Drag your pointer to the destination object to
attach the default transition.

The size of the endpoint of the default transition is proportional to the
arrowhead size. See “Changing Transition Arrowhead Size” on page 4-21.

Default transitions can be labeled just like other transitions. See “Labeling
Default Transitions” on page 2-26 for an example.
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Changing Transi tion Properties
Use the Transiti on dialog box to view and change the properties for a
transition. To a ccess the Transitions dialog for a particular transition, follow
these steps:

1 Right-click on the transition.

A shortcut pop-up menu appears.

2 Choose Properties from the shortcut menu.

The Transition dialog for the transiti ons appears as shown.

The following table lists and describes the properties displayed for a
transition in its Transition dialog:
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Field Description

Source Source of the transition; read-only; click the
hypertext link to bring the transition source
to the foreground.

Destination Destination of the transition; read-only; click
the hypertext link to bring the transition
destination t o the foreground.

Parent Parent of this state; read-only; click the
hypertext li nk to bring the parent to the
foreground.

Debugger
breakpoints

Select the check boxes to set debugging
breakpoints either when the transition is
tested for v alidity or when it is valid.

Execution order The order in which the transition is executed.

Label The transit ion’s label. See “Transition Label
Notation” o n page 2-14 for more information
on valid la bel formats.

Description Textual de scription/comment.

Document Link Enter a Web URL address or a general
MATLAB ® command. Examples are
www.mathworks.com , mailto:email_address ,
and edit/ spec/data/speed.txt .

3 After mak ing changes, select one of these options:

• Apply to save the changes and keep the Transition dialog open.

• Cancel to return to the previous settings for the dialog

• OK to save the changes and close the dialog box

• Help to di splay Stateflow online help in an HTML browser window.
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Creating Flow Graphs with Connective Junctions

In this section...

“When to Use Connective Junctions” on page 4-25

“Creating a Connective Junction” on page 4-25

“Changing Connective Junction Size” on page 4-26

“Changing Junction Properties” on page 4-26

When to Use Connective Junctions
Use connective junctions to provide decision points between alternate
transition paths.

Creating a Connective Junction
To create a connective junction, follow these steps:

1 In the chart to olbar, click the Connective Junction tool .

2 Move your pointer into the Stateflow ® Editor.

The pointer appears in the shape of a connective junction.

3 Click to place a connective junction in the desired location in the drawing
area.

Creating Multiple Connective Junctions
To create mul tiple connective junctions, follow these steps:

1 In the chart t oolbar, double-click the Connective Junction tool.

2 The button is now in multiple object mode.

3 Click anywhere in the drawing area to place a connective junction in the
drawing area.
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4 Move to and click another location to create an additional connective
junction.

5 Click the Connective Junction tool or press the Esc key to cancel the
operation.

Moving a Connective Junction
To move a connective junction to a new location, click and drag it to the new
position.

Changing Connecti ve Junction Size
To change the size of connective junctions, do the following:

1 Select the connective junctions whose size you want to change.

2 Place your pointer over one of the conne ctive junctions and right-click.

3 In the resulting submenu, place your pointer over Junction Size.

A menu of junction sizes appears.

4 Select a size from the menu of junction sizes.

Changing Junction Properties
To edit the properties for a connect ive junction, follow these steps:

1 Right-click a connective junction.

2 In the resulting submenu select Properties.

The Connective Junction dialog box appears.
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3 Edit the fields in the properties dialog.

Field Description

Parent Parent of this state; read-only; click the
hypertext link to bring the parent to the
foreground.

Description Textual description/comment.

Document Link Enter a URL address or a general
MATLAB ® command. Examples are
www.mathworks.com , mailto:email_address ,
and edit/spec/data/speed.txt .

4 When you finish editing, select one of these options:

• Select the Apply button to save the changes.

• Select the Cancel button to cancel any changes you’ve made.

• Select OK to save the changes and close the dialog box.

• Select the Help button to display the Stateflow online help in an HTML
browser window.
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Using the Stateflow ® Editor

In this section...

“Stateflow ® Editor Window” on page 4-28

“Displaying the Context Menu for Objects” on page 4-30

“Specifying Colors and Fonts” on page 4-31

“Differentiating Syntax Elements in the Stateflow ® Action Language” on
page 4-34

“Selecting and Deselecting Objects” on page 4-37

“Cutting and Pasting Objects” on page 4-38

“Copying Objects” on page 4-38

“Editing Object Labels” on page 4-39

“Viewing Stateflow ® Objects in the Model E xplorer” on page 4-39

“Zooming a Chart” on page 4-40

“Zooming a Chart Object Using the Stateflow ® API” on page 4-41

“Undoing and Redoing Editor Operations” on page 4-45

“Stateflow ® Chart Notes Dialog Box” on page 4-46

“Keyboard Shortcuts for Stateflow ® Charts” on page 4-48

“Customizing the Stateflow ® Editor” on page 4-51

Stateflow ® Editor Window
You use the Stateflow ® Editor to draw, zoom, modif y, print, and save a chart
displayed in the window. It has the following appearance:
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The Stateflow Editor window incl udes the following elements:

• Title bar

The full chart name appears here in model name/ chart name* format. The
* character appears on the end of the c hart name for a newly created chart
or for an existing chart that ha s been edited but not saved yet.

• Menu bar

Most editor commands are available from the menu bar.

• Toolbar

Contains buttons for cut, copy, paste, and other commonly used editor
commands. You can identify each tool of the toolbar by placing your pointer
over it until an identifying tool tip appears.

The toolbar also contains buttons for navigating a chart’s subchart
hierarchy (see “Navigating Subcharts” on page 6-10).

• Object palette
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Displays a set of tools for drawing state s, transitions, and other state chart
objects.

• Drawing area

Displays an editable copy of a chart.

• Zoom control

See “Viewing Stateflow ® Objects in the Model Explorer” on page 4-39 for
information on using the zoom control.

• Shortcut menus

These menus pop up from the drawing area when you right-click an object.
They display commands that apply only to that object. If you right-click
an empty area of the Stateflow Editor, the shortcut menu applies to the
chart object. See “Displaying the Con text Menu for Objects” on page 4-30
for more information.

• Status bar

Displays tool tips and status information.

Displaying the Context Menu for Objects
Every object that you create in a chart has a shortcut menu associated with it.
To display the shortcut (context) menu, do the following:

1 Move your pointer over the object.

2 Right-click the object.

A menu of operations that apply to the object appears.

To display the context menu for th e chart object, do the following:

1 Move your pointer to an unoccupied location in the chart.
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2 Right-click the location.

A menu of operations that apply to the chart appears.

Specifying Colors and Fonts
You can specify the color and font for items in the Stateflow Editor, as
described in the following topics:

• “Changing Fonts for an Individual Text Item” on page 4-31 — Tells you how
to set color and font for an individual item in the Stateflow Editor.

• “Using the Colors & Fonts Dialog” on page 4-31 — Shows you how to set
default colors and fonts for all Stateflow Editor items in the Colors and
Fonts dialog

Changing Fonts for an Individual Text Item
You can change the font for an individual text item as follows:

1 Right-click the text item.

2 In the context menu, select Font Size > size of font.

You can also specify the label font size of a particular object:

1 Left-click an individual text item in the Stateflow Editor.

2 Select Edit > Set Font Size.

3 In the context menu, select the font size.

Using the Colors & Fonts Dialog
The Colors & Fonts dialog allows you to specify a color scheme for a chart as a
whole, or colors and label fonts for di fferent types of objects in a chart.

To display the Colors & Fonts dialog, select Edit > Style in the Stateflow
Editor.
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The drawing area of the dialog displays examples of the types of objects whose
colors and font labels you can specify . The examples use the colors and label
fonts specified by the current color scheme for the chart. To choose another
color scheme, select the scheme from the dialog’s Schemes menu. The dialog
displays the selected color scheme. Click Apply to apply the selected scheme
to the chart or OK to apply the scheme and dismiss the dialog.

To make the selected scheme the defa ult scheme for all charts, select Make
this the "Default" scheme from the dialog’s Options menu.

To modify the current scheme, positio n your pointer over the example of the
type of object whose color or label fon t you want to change. Then left-click
to change the object’s color or right-click to change the object’s font. If you
left-click, a color chooser dialog appears.
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Use the dia log to select a new color for the selected object type.

If the sele cted object is a label and you right-click, a font selection dialog
appears.

Use the font selector to choose a n ew font for the selected label.
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To save changes to the default color scheme, select Save defaults to disk
from the Colors & Fonts dialog’s Options menu.

Note Choosing Save defaults to disk has no effect if the modified scheme is
not the default scheme.

Differentiating Syntax Elements in the Stateflow ®

Action Language
This release gives you the option of usin g color highlighting to differentiate
the following syntax elements in the Stateflow action language:

• Keyword

• Comment

• Event

• Graphical function

• String

• Number

Note Syntax highlighting is a user pre ference, not a model preference.

Default Syntax Highlighting
Syntax highlighting is enabled by defau lt, assigning the following colors to
syntax elements:
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This Stateflow chart illustrates the default highlighting for each language
element:
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If the parser cannot resolve a syntax element, the Stateflow Editor displays
the element in the default text color.

To modify color assignments, see “Editing Syntax Highlighting” on page
4-36. To disable syntax highlighting, see “Enabling and Disabling Syntax
Highlighting” on page 4-36.

Editing Syntax Highlighting
To edit syntax highlighting, follow these steps:

1 In the Stateflow Editor, select Edit > Highlighting Preferences.

The Syntax Highlight Preferences dialog appears.

2 Click the color you want to change, choose an alternative from the color
palette, and click Apply.

3 Click OK to close the Syntax Highlight Preferences dialog.

Enabling and Disabling Syntax Highlighting
You can toggle syntax highlighting from the Tools and Edit menus in the
Stateflow Editor. From the Tools menu, select Syntax Highlighting. From
the Edit menu, follow these steps:
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1 Select Highlighting Preferences to open the Syntax Highlight
Preferences dialog.

2 Check or uncheck Enable syntax highlighting and click OK.

Selecting and Deselecting Objects
Once an object is in the drawing area, you need to select it to make any
changes or additions to that object.

Select objects in the Stateflow Editor as follows:

• To select an object, click anywhere inside of the object.

• To select multiple adjace nt objects, click and drag a selection rubberband so
that the rubberband box encompasse s or touches the objects you want to
select, and then release the mouse button.

All objects or portions of objects w ithin the rubberband are selected.

• To select multiple separate objects, simultaneously press the Shift key and
click an object or rubberband a group of objects.

This adds objects to the list of already selected objects unless an object
was already selected, in which case, t he object is deselected. This type
of multiple object selection is useful for selecting objects within a state
without selecting the state itself when you rubberband select a state and all
of its objects and then Shift-click inside the containing state to deselect it.

• To select all objects in the Stateflow chart, from the Edit menu select
Select All.

You can also select all objects by selecting Select All from the right-click
shortcut menu.

• To deselect all selected objects, press the Esc key.

Pressing the Esc key again displays the parent of the current chart.

When an object is selected, it is highlighted in the color set as the selection
color (blue by default; see “Specifying Colors and Fonts” on page 4-31 for
more information).
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Cutting and Past ing Objects
You can cut objects from the drawing area or cut and then paste them as many
times as you like . You can cut and paste objects from one Stateflow chart to
another. The Sta teflow Editor retains a selection list of the most recently
cut objects. Th e objects are pasted in the drawing area location closest to
the current poi nter location.

To cut an object , select the object and choose Cut from one of the following:

• The Edit menu on the Stateflow Editor

• The right-clic k shortcut menu

To paste the most recently cut selection of objects, choose Paste from either
of the followi ng:

• The Edit menu on the Stateflow Editor

• The right-cli ck shortcut menu

Copying Objec ts
To copy and paste an object in the drawing area, select the objects and
right-click a nd drag them to the desired loca tion in the drawing area. This
operation als o updates the Stateflow clipboard.

Note If you copy and paste a state, a unique name is automatically generated
for the new st ate.

Alternativel y, to copy from one Stateflow chart to another, choose the Copy
and then Paste menu items from either of the following:

• The Edit menu in the Stateflow Editor window

• The right-cl ick shortcut menu

You can group together states that contain other states (superstates).
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Editing Object L abels
Some Stateflow objects (for example, states and transitions) have labels. To
change these labels, place your pointer anywhere in the label and click. Your
pointer changes to an I-beam. You can then edit the text.

You can use the shortcut (context) menu to ch ange a label’s font size:

1 Select the stat es whose label font size you want to change.

2 Right-click to display the shortcut menu.

3 Place your pointer over the Font Size menu item.

A menu of font si zes appears.

4 Select the desired font size from the menu.

The Stateflow Editor changes the font size of all labels on all selected states
to the selected size.

Viewing Stateflow ® Objects in the Model Explorer
To view or modify Stateflow Editor objects in the Model Explorer, follow
these steps:

1 Position your pointer over the state.

2 Right-click t o display the context menu for the state.

3 Select Explore from the context menu.

The Model Explorer opens (if not alrea dy open) and highlights the state in
the left hierarchy pane to show any d ata or events defined by the state.

To view data and events defined by the par ent state of a transition or junction,
select Explore from the transition or junction’s context menu.

The Model Explorer is the only place where you can view and modify data and
events. See Chapter 7, “De fining Data” and Chapter 8, “Defining Events” for
more details on using the Model Explorer to view, add, delete, and modify
data and events for Stateflow objects. See also “Using the Model Explorer
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with Stateflow ® Objects” on page 20-2 for more details on using the Model
Explorer to view Stateflow objects.

Zooming a Chart
You can magnify or shrink a chart, using the following zoom controls:

• Zoom Factor Selector. Selects a zoom factor (see “Using the Zoom Factor
Selector” on page 4-40).

• Zoom In button. Zooms in by the current zoom factor.

You can also press the R key to increase the zoom factor.

• Zoom Out button. Zooms out by the current zoom factor.

You can also press the V key to decrease the zoom factor.

Using the Zoom Factor Selector
The Zoom Factor Selector allows you to specify the zoom factor by

• Choosing a value from a menu.

Click the selector to display the menu.

• Double-clicking the Zoom Factor Selector selects the zoom factor that
will fit the view to all selected objects or all objects if none are selected.

You can achieve the same effect by choosing Fit to View from the right-click
context menu or by pressing the F key to apply the maximum zoom that
includes all selected objects. Press the space bar to fit all objects to the view.

• Clicking the Zoom Factor Selector and dragging up or down.

Dragging the mouse upward increases the zoom factor. Dragging the mouse
downward decreases the zoom factor. Al ternatively, right-clicking and
dragging on the percentage value resizes while you are dragging.

Zooming with Shortcut Keys
This table is a summary of the shortcut keys you can use to perform some of
the zooming operations described above:
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Key Zoom Operation

F Highlight (select) an object and press the F key to
fit it to view.

space bar Set to full view of chart.

R or + Increase zoom factor.

V or - Decrease zoom factor.

Moving in Zoomed Charts with Shortcut Keys
You can also use number keys to move i n zoomed charts according to their
layout in the number keypad:

You can ent er numbers for moving from the number keys above the alphabetic
keys at any time or from the number keypad if NumLock is engaged for the
keyboard. The 5 key fits the currently selected object to full view. If no object
is selected, the entire chart is fit to view.

Zooming a Chart Object Using the Stateflow ® API

How to Zoom a Chart Object
Use the St ateflow API method fitToView to zoom in on a graphical object in
the State flow Editor. (See “Using the API” in the Stateflow API documentation
for info rmation about obtaining object handles.)
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Objects You Can Zoom
You can zoom these objects in the Stateflow Editor:

• Charts

• Subcharts

• States

• Transitions

• Graphical functions

• Truth tables

• Embedded MATLAB™ functions

• Connective junctions

• History junctions

• Boxes

• Notes

Example of Zooming States in a Chart
Follow these steps to zoom in on different states in the sf_car demo:

1 At the MATLAB ® command prompt, type:

sf_car;

The chart shift_logic appears in the Stateflow Editor.

2 To define an object handle for the chart shift_logic , type:

myChart = find(sfroot,'-isa','Stateflow.Chart','name', ...
'shift_logic');

3 To define an object handle for the state upshifting , type:

myState = find(sfroot,'-isa','Stateflow.State','name', ...
'upshifting');

4 To zoom in on the state upshifting , type:
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myState.fitToView;

The Stateflow Editor zooms in o n the state and highlights it.

5 To define an object handle for the state downshifting , type:

myState = find(sfroot,'-isa','Stateflow.State','name', ...
'downshifting');

6 To zoom in on the state downshifting , type:

myState.fitToView;

The Stateflow Editor zooms in o n the state and highlights it.
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7 To zoom back to the chart level in the Stateflow Editor, type:

myChart.fi tToView;

The chart shift_logic reappears, as shown below.

8 You can also zoom in on a state using the sfgco function. Follow these
steps:
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a Click any state in the chart.

b At the MATLAB command prompt, type:

myState = sfgco;

This command assigns the selected state to the object handle myState .

c To zoom in on the selected state, type:

myState.fitToView;

The Stateflow Editor zooms in on the state and highlights it.

Undoing and Redoing Editor Operations
You can undo and redo operations you perform in the Stateflow Editor. When
you undo an operation in the Stateflow Editor, you reverse the last edit
operation you performed. After you undo operations in the Stateflow Editor,
you can also redo them one at a time.

To undo an operation in the Stateflow Editor, do one of the following:

• Select the Undo icon in the toolbar of the Stateflow Editor .

When you place your pointer over the Undo button, the tool tip that
appears indicates the nature of the operation to undo.

• From the Edit menu, select Undo.

To redo an operation in the Stateflow Editor, do one of the following:

• Select the Redo icon in the toolbar of the Stateflow Editor .

When you place your pointer over the Redo button, the tool tip that
appears indicates the nature of the operation to redo.

• From the Edit menu, select Redo.

Exceptions for Undo
You can undo or redo all Stateflow Editor operations, with the following
exceptions:
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• You cannot undo the operation of turning subcharting off for a state
previously subcharted.

To understand subcharting, see “Using Subcharts to Extend Charts” on
page 6-6.

• You cannot undo the drawing of a supertransition or the splitting of an
existing transition.

Splitting of an existing tr ansition refers to the redirection of the source or
destination of a transition segment t hat is part of a supertransition. For
a description of supertransitions, see “Drawing a Supertransition Into a
Subchart” on page 6-12 and “Drawing a Supertransition Out of a Subchart”
on page 6-15.

• You cannot undo any changes made to the Stateflow Editor through the
Stateflow API.

For a description of the Stateflow API (Application Programming Interface),
see “Using the API” in the Stateflow API Guide.

Caution When you perform one of the prec eding operations, the undo and
redo buttons are disabled from undoing and redoing any prior operations.

Stateflow ® Chart Notes Dialog Box
You can use the chart notes dialog box to edit note properties.
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The Note dialog contains the following properties for a chart note:

Field Description

Label The label for the note. This includes the name of the
note and its associated actions.

Description Textual description/comment.
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Field Description

Use display text as
click callback

Checking this option causes a Simulink ® model to
treat the text in the Text field as the note’s click
function. The specified text must be a valid MATLAB
expression comprising sy mbols that are defined in
the MATLAB workspace when the user clicks this
annotation. Note that selec ting this option disables
the ClickFcn edit field.

ClickFcn Specifies MATLAB code to be executed when a user
single-clicks this annotation. The Simulink model
stores the code entered in this field.

Document Link Enter a URL address or a general MATLAB
command. Examples are www.mathworks.com ,
mailto:email_address , and edit
/spec/data/speed.txt .

See “Annotation Callback Functions” in the Simulink User’s Guide for a
description of the ClickFcn edit field.

Keyboard Shortcuts for Stateflow ® Charts
This table gives a comprehensive list of keyboard shortcuts for the Stateflow
Editor.

Task
Windows ®

platform
UNIX ®

platform

Display the parent of the currently
displayed chart or subchart. There is no
limit on the time between the entry of each
period.

.. (two
periods)

.. (two
periods)

Zoom in by an incremental amount. + or r or R + or r or R

Zoom out by an incremental amount. - or v or V - or v or V

Fit chart to screen. 0 or Space
Bar

0 or Space
Bar

Zoom to normal view. 1 1
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Task
Windows ®

platform
UNIX ®

platform

Move the current Stat eflow Editor view
down within the full chart.

2 2

Move the current Stat eflow Editor view
down and right within the full chart.

3 3

Move the current Statef low Editor view left
within the full chart.

4 4

Fit the currently selected object to full view.
If no object is selected, the chart is fit to full
view.

5 5

Move the current Stat eflow Editor view
right within the full chart.

6 6

Move the current Stateflow Editor view up
and left within the full chart.

7 7

Move the current Stateflow Editor view up
within the full chart.

8 8

Move the current Stateflow Editor view up
and right within the full chart.

9 9

Delete the selected objects. Delete Delete

Access the contents of the currently
highlighted subch art or truth table.

Enter Enter
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Task
Windows ®

platform
UNIX ®

platform

Perform any of the following actions:

• If you are editing the label of an object,
the Esc key disables label editing but
leaves the object selected.

• If objects are selected, the Esc key
deselects all objects in the current view.

• If the current chart view is the contents
of a subchart and no object is selected, the
Esc key changes the view to the parent
of the subchart.

• If the current chart view is at the chart
level and no object is selected, the Esc
key displays the Simulink model window
for that chart’s block.

Esc Esc

Fit the currently selected object to screen.
If no object is selected, the chart is fit to
screen.

f or F f or F

Pan left d or D or
Ctrl+Left
Arrow

d or D or
Ctrl+Left
Arrow

Pan right g or G or
Ctrl+Right
Arrow

g or G or
Ctrl+Right
Arrow

Pan up e or E or
Ctrl+Up
Arrow

e or E or
Ctrl+Up
Arrow

Pan down c or C or
Ctrl+Down
Arrow

c or C or
Ctrl+Down
Arrow

Go back in pan/zoom history b or B b or B

Go forward in pan/zoom history t or T t or T
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Task
Windows ®

platform
UNIX ®

platform

Select the first state, function, truth table,
or box parented (contained) by the currently
selected object in the same chart. Selection
order of contained objects is top-down,
left-right. See also u key.

j (jump) or J j (jump) or J

Select the next state, function, truth table,
or box at the same containment level.
Selection order of objects is top-down,
left-right.

n (next) or N n (next) or N

Select the previous state, function, truth
table, or box at the same containment
level. Selection order of objects is top-down,
left-right.

p (previous)
or P

p (previous)
or P

Select the parent object of the currently
highlighted object in the same chart. See
also j key.

u (up) or U u (up) or U

Customizing the Stateflow ® Editor

You can write M-code to customize the Stateflow Editor by

• Adding items and submenus to the end of Stateflow Editor menus (see
“Adding Items to Stateflow ® Editor Menus” on page 4-51)

• Disabling and hiding items on menus in the Stateflow Editor (see
“Disabling and Hiding Stateflow ® Editor Menu Items” on page 4-54)

Adding Items to Stateflow ® Editor Menus
You use the Simulink customization manager to add items, including
submenus, to the end of menus in the Stateflow Editor. For example, you can
add menu items that invoke your own M-code functions.

To add an item to the end of a Stateflow Editor menu, you must create the
following functions in an sl_customization.m file on the MATLAB path:
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• For each item, create a schema function, which defines a custom item on a
menu owned by the Stateflow Editor.

• Create a custom menu function, which registers schema functions that
define custom items that you want to add to a menu.

• Define the sl_customization function to register the custom menu
function with the Simulink customization manager.

• Create callback functions for the items that you add to the Stateflow Editor
menus.

For detailed descriptions of these pro cedures, see “Adding Items to Model
Editor Menus” in the Simulink User’s Guide.

Code Example: Adding a Custom Submenu to the Stateflow Editor.
The following sl_customization.m file adds a submenu called Set Font
Style to the Stateflow Editor’s Edit menu. The submenu contains three menu
options for font style: Arial, Courier New, and Times New Roman. Your
sl_customization function should accept on e argument, a handle to an
object called the Simulink.CustomizationManager . For example, you can set
cm = sl_customization_manager at the MATLAB command line.

function sl_customization(cm)

%% Register custom menu function.
cm.addCustomMenuFcn('Stateflow:EditMenu', @getMyMenuItems);

end

%% Define the custom submenu function.

function schemaFcns = getMyMenuItems(callbackInfo)
schemaFcns = {@getItem4};

end

%% Define the schema function for first submenu item
function schema = getItem1(callbackInfo)

schema = sl_action_schema;
schema.label = 'Arial';
schema.userdata = 'font style Arial';
schema.callback = @myCallback1;

end
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%% Define the schema function for second submenu item.
function schema = getItem2(callbackInfo)

schema = sl_action_schema;
schema.label = 'Courier New';
schema.userdata = 'font style Courier New';
schema.callback = @myCallback1;

%% Define the schema function for third submenu item.
function schema = getItem3(callbackInfo)

schema = sl_action_schema;
schema.label = "Times New Roman';
schema.userdata = 'font style Times New Roman';
schema.callback = @myCallback1;

end

function myCallback1(callbackInfo)
disp(['Callback for 'callbackInfo.userdata' was called']);

end

function schema = getItem4(callbackInfo)
% Make a submenu label 'Set Font Style'
% with the font styles defined in menu items above.
schema = sl_container_schema;
schema.label = 'Set Font Style';
schema.childrenFcns = {@getItem1, @getItem2, @getItem3};

end

Note The addCustomMenuFcn function requires that you pass a string
argument that identifies the menu o r menu item you wish to customize. To
determine the appropriate tag, see “Displaying Menu Tags” on page 4-56.

Custom Menu Example: Set Font Style. When you run
sl_customization(cm) described in “Code Example: Adding a Custom
Submenu to the Stateflow ® Editor” on page 4-52, the following new submenu
appears in the Stateflow Editor.
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Disabling and Hiding Stateflow ® Editor Menu Items
You can disable or hide items that appear on Stateflow Editor menus by

• Creating a filter function that disables or hides the menu item (see
“Creating a Filter Function” in the Simulink User’s Guide)

• Registering the filter function with the Simulink customization manager
(see “Registering a Filter Function” in the Simulink User’s Guide)

For detailed descriptions of these pro cedures, see “Disabling and Hiding
Model Editor Menu Items” in the Simulink User’s Guide.

Code Example: Disabling the Print Command in the Stateflow Editor.
The following sl_customization.m file disables th e Print command in
the File menu of the Stateflow Editor. The example assumes you set cm =
sl_customization_manager .
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function sl_customization(cm)

%%Register custom filter function.
cm.addCustomFilterFcn('Stateflow:PrintMenuItem', @myFilter);

end

function state = myFilter(callbackInfo)
state = 'Disabled';

end

Note The addCustomFilterFcn function requires that you pass a string
argument that identifies the menu or menu item you wish to disable or hide.
To determine the appropriate tag, see “Displaying Menu Tags” on page 4-56.

The myFilter function sets the state of the menu item. Valid states are:

• ’Hidden’

• ’Disabled’

• ’Enabled’

Custom Menu Example: Disable Print Menu Item. After you run
sl_customization(cm) described in “Code Example: Disabling the Print
Command in the Stateflow ® Editor” on page 4-54, the Stateflow Editor’s File
menu looks like this:

4-55



4 Creating Stateflow® Charts

Displaying Menu Tags
To determine the tags that identify the menus or menu items you wish to
customize on the Stateflow Editor, set the Simulink customization manager’s
showWidgetIdAsToolTip property to true by entering the following commands
at the MATLAB command line:

cm = sl_customization_manager;
cm.showWidgetIdAsToolTip = true;

After enabling this property, the tag of each menu or menu item appears next
to its label in the Stateflow Editor:
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To turn off tag display, enter the following command at the MATLAB
command line:

cm.showWidgetIdAsToolTip = false;

Note Some Stateflow Editor menu items may not work while menu tags are
displayed. Thus, you should turn off menu tag display before attempting
to use the menus.
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Overview of Mealy and Moore Machines

In this section...

“Semantics of Mealy and Moore Machines” on page 5-2

“Running a Demo of Mealy and Moore Machines” on page 5-3

“The Default State Machine Type” on page 5-4

“What is State?” on page 5-4

“Availability of Output” on page 5-4

“Advantages of Mealy and Moore Charts Over Classic Stateflow ® Charts”
on page 5-5

Semantics of Mealy and Moore Machines
Mealy and Moore are often considered the basic, industry-standard paradigms
for modeling finite-state machines. Generally in state machine models, the
next state is a function of the current state and its inputs, as follows:

X n f X n u( ) ( ( ), )+ =1

In this equation:

X(n) Represents the state at time step n

X(n+1) Represents the state at the next time step n+1

u Represents inputs

In this context, Mealy and Moore machines each have well-defined semantics.
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Type of
Machine

Semantics Applications

Mealy Output is a function of inputs
and state:

y g X u= ( , )

Clocked synchronous
machines where state
transitions occur on clock
edges

Moore Output is a function only of
state:

y g X= ( )

Clocked synchronous
machines where outputs
are modified at clock edges

You can create charts that implement pure Mealy or Moore semantics as a
subset of Stateflow ® chart semantics (see “Creating Mealy and Moore Charts”
on page 5-6). Mealy and Moore charts can be used in simulation and code
generation of C and hardware de scription language (HDL).

Note To generate HDL code from Statefl ow charts, you must use Simulink ®

HDL Coder™ software, which is available separately.

Running a Demo of Mealy and Moore Machines
Stateflow software ships with a demon stration that shows how to use Mealy
and Moore machines for sequence recognition in signal processing. You can
run the demo by following these steps:

1 At the MATLAB ® prompt, type this command:

demos

The Help browser appears, listing categories of demos in the left pane.

2 In the left pane, navigate to Simulink > Stateflow > General
Applications > Sequence Recognition Using Mealy and Moore
Charts.

3 Follow the instructions in the right pane of the Help browser.
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The Default State Machine Type
When you create a Stateflow chart, the default type is a hybrid state machine
model that combines the semantics of Mealy and Moore charts with the
extended Stateflow chart semant ics (see Chapter 3, “Stateflow ® Chart
Semantics”). This default chart type is called Classic.

What is State?
State is a combination of local data and chart activity. Therefore, computing
state means updating local data and making transitions from a currently
active state to a new state. State persists from one time step to another. In
a Classic Stateflow chart, output behaves like state because output values
persist between time steps. However, unl ike state, output is available outside
the chart through output ports. By contrast, output in Mealy and Moore
charts does not persist and instead must be computed in each time step.

Availability of Output
Stateflow chart semantics guarantee that the output of Mealy and Moore
machines is well defined at every time step by enforcing the option Initialize
Outputs Every Time Chart Wakes Up for these chart types. This option
initializes outputs to a default value whenever the chart is triggered (see
“Setting Properties for Individual Charts” on page 13-6). Normally, charts
compute output data in every execution. In this case, computed outputs
override the default values. However, when output is not computed, the
default value applies.

Mealy machines compute output on tr ansitions, while Moore machines
compute outputs in states. Therefore, M ealy charts can compu te output earlier
than Moore charts — that is, at the time the chart’s default path executes.
If you enable the chart property Execute (enter) Chart At Initialization,
this computation occurs at t = 0 (first time step); otherwise, it occurs at t = 1
(next time step). By contrast, Moore machines can compute outputs only after
the default path executes. Until then , outputs take the default values.

The following table summarizes the earliest time at which output can be
computed in Mealy and Moore charts:
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Execute (enter) Chart
at Initialization

Mealy Computes
Outputs at:

Moore computes
Outputs at:

Enabled t = 0 t = 1

Disabled t = 1 t = 2

Advantages of Mealy and Moore Charts Over Classic
Stateflow ® Charts
Mealy and Moore charts offer the following advantages over Classic Stateflow
charts:

• You can verify the Mealy and Moore charts you create to ensure that they
conform to their formal definitions a nd semantic rules. Error messages
appear at compile time (not at design time).

• Moore charts provide a more efficient implementation than Classic charts,
both for C and HDL targets.
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Creating Mealy and Moore Charts

To create a new Mealy or Moore chart, follow these steps:

1 Add a newStateflow ® block to a Simulink ® model; then double-click the
block to open the Stateflow Editor.

2 Right-click in the Stateflow Editor and select Properties.

The Chart Proper ties dialog box opens on your desktop.

3 From the State Machine Type drop-down menu, select Mealy or Moore.
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4 Click OK.

The chart icon updates to display the selected chart type:
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Mealy Moore

The title bar of the Stateflow Editor also disp lays the selected chart type.

5 Design your chart according to the guidelines for the chart type (see “Design
Considerations for Mealy Charts” on p age 5-9 and “Design Considerations
for Moore Charts” on page 5-15.
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Design Considerations for Mealy Charts

In this section...

“Mealy Semantics” on page 5-9

“Design Rules for Mealy Charts” on page 5-9

“Example: Mealy Vending Machine” on page 5-12

Mealy Semantics
To ensure that output is a function of input and state, Mealy state machines
enforce the following semantics:

• Outputs never depend on previous outputs.

• Outputs never depend on the next state.

• Chart wakes up periodically based on a system clock.

Note A Stateflow ® chart provides one time base for input and clock (see
“Calculate Output an d State Using One Time Base” on page 5-12).

• Chart must compute outputs whenever there is a change on the input port.

• Chart must compute outputs only in transitions, not in states.

Design Rules for Mealy Charts
To conform to the Mealy definition of a state machine, you must ensure that a
Mealy chart computes outputs every time there is a change on the input port.
As a result, you must follow a set of design rules for Mealy charts.

• “Compute Outputs in Condition Actions Only” on page 5-10

• “Do Not Use State Actions or Tra nsition Actions” on page 5-10

• “Restrict Use of Data” on page 5-10

• “Restrict Use of Events” on page 5-11

• “Initialize Outputs Every Tim e Chart Wakes Up” on page 5-12
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• “Calculate Output and State Using One Time Base” on page 5-12

Compute Outputs in Condition Actions Only
You can compute outputs only in the condition actions of outer and inner
transitions. A common modeling style for Mealy machines is to test inputs in
conditions and compute outputs in the associated action.

Do Not Use State Actions or Transition Actions
You cannot use state actions or transition actions in Mealy charts. This
restriction enforces Mealy semantics by

• Preventing you from computing outp ut without considering changes on
the input port

• Ensuring that output depends on current state and not next state

Restrict Use of Data
You can define inputs, outputs, local data, parameters, and constants in Mealy
charts, but other data restrictions apply:

• “Restrict Machine-Parented Data t o Constants and Parameters” on page
5-10

• “Do Not Define Data Store Memory” on page 5-11

Restrict Machine-Parented Data to Constants and Parameters.
Machine-parented data is data that you define for a Stateflow machine,
which is the collection of all Stateflow blocks in a Simulink ® model. The
Stateflow machine is the highest level of the Stateflow hierarchy. When you
define data at this level, every chart in the machine can read and modify the
data. To ensure that Mealy charts do not access data that can be modified
unpredictably outside the chart, you can define only constants and parameters
at the machine level.

Note Chart parameters have constant value during simulation and code
generation.
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Do Not Define Data Store Memory. You cannot define data store memory
(DSM) in Mealy charts because DSM objects can be modified by objects
external to the chart. A Stateflow chart uses data store memory to share data
with a Simulink model. Data store memory acts as global data that can be
modified by other blocks and models in the Simulink hierarchy that contains
the chart. Mealy charts should not acce ss data that can change unpredictably.

Restrict Use of Events
You must limit the use of events in Mealy charts as follows:

Do: Do Not:

Use input events to trigger the chart Broadcast any type of event

Use event-based temporal logic to
guard transitions

You can use event-based temporal
logic in Mealy charts because
it behaves synchronously (see
“Operators for Event-Based
Temporal Logic” on page 9-58).
Think of the change in value of a
temporal logic condition as an event
that the chart schedules internally.
Therefore, at each time step, the
chart retains its notion of state
because it knows how many ticks
remain before the temporal event
executes.

Note In Mealy charts, the base
event for temporal logic operators
must be a predefined event such as
tick or wakeup (see “Referencing
Implicit Events” on page 8-21).

Use local or machine-parented
events to guard transitions

You cannot use local or
machine-parented events in
Mealy charts because they are not
deterministic. These events can
occur while the chart computes
outputs and, therefore, violate Mealy
semantics that require charts to
compute outputs whenever input
changes.
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Initialize Outputs Every Time Chart Wakes Up
To prevent latching of outputs, a Mealy c hart automatically a pplies the initial
value of its outputs every time it wakes up. This is a requirement for Mealy
charts to ensure that outputs do not de pend on previous values of outputs.

When you create a Mealy chart, it enforces the chart property Initialize
Outputs Every Time Chart Wakes Up. For more information about this
property, see “Setting Properties for Individual Charts” on page 13-6.

Calculate Output and State Using One Time Base
You can use one time base for clock and input, as determined by the Simulink
solver (see “Solvers”). The Simulink so lver sets the clock ra te to be fast enough
to capture input changes. As a resul t, a Mealy chart commonly computes
outputs and changes states in the same time step.

Example: Mealy Vending Machine
The following chart uses Mealy semantics to model a vending machine.
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Logic of the Mealy Vending Machine
In this example, the vending machine r equires 15 cents to release a can of
soda. The purchaser can insert a nickel or a dime, one at a time, to purchase
the soda. The chart behaves like a Mealy machine because its output soda
depends on both the input coin and current state, as follows:

When initial state got_0 is active. No coin has been received or no coins
are left.

• If a nickel is received ( coin == 1), output soda remains 0, but state
got_nickel becomes active.

• If a dime is received ( coin == 2), output soda remains 0, but state got_dime
becomes active.

• If input coin is not a dime or a nickel, state got_0 stays active and no
soda is released (output soda = 0).

In active state got_nickel. A nickel was received.

• If another nickel is received ( coin == 1), state got_dime becomes active,
but no can is released ( soda remains at 0).

• If a dime is received ( coin == 2), a can is released (soda = 1), the coins are
banked, and the active state becomes got_0 because no coins are left.

• If input coin is not a dime or a nickel, state got_nickel stays active and
no can is released (output soda = 0).

In active state got_dime. A dime was received.

• If a nickel is received ( coin == 1), a can is released (soda = 1), the coins are
banked, and the active state becomes got_0 because no coins are left.

• If a dime is received ( coin == 2), a can is released (soda = 1), 15 cents
is banked, and the active state becomes got_nickel because a nickel
(change) is left.

• If input coin is not a dime or a nickel, state got_dime stays active and no
can is released (output soda = 0).
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Design Rules in Mealy Vending Machine
This example of a Mealy vending machine illustrates the following Mealy
design rules:

• The chart computes outputs in condition actions.

• There are no state actions or transition actions.

• The chart defines chart inputs ( coin ) and outputs ( soda ).

• The value of the input coin determines the output — whether or not soda
is released.
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Design Considerations for Moore Charts

In this section...

“Moore Semantics” on page 5-15

“Design Rules for Moore Charts” on page 5-15

“Example: Moore Traff ic Light” on page 5-22

Moore Semantics
In Moore charts, output is a function of current state only. At every time step,
a Moore chart wakes up, computes its outputs, and then evaluates its inputs
to reconfigure itself for the next time s tep. For example, after evaluating its
inputs, the Moore chart may take transitions to a new configuration of active
states, also called next state. However, the Moore chart must always compute
its outputs before changing state.

To ensure that output is a function only of state, Moore state machines enforce
the following semantics:

• Outputs depend only on the current state, not the next state.

• Outputs never depend on previous outputs.

• Chart must compute outputs only in states, not in transitions.

• Chart must compute output s before updating state.

Design Rules for Moore Charts
To conform to the Moore definition of a state machine, you must ensure that
every time a Moore chart wakes up, it computes outputs from the current set
of active states without regard to input. As a result, you must follow a set of
design rules for Moore charts.

• “Compute Outputs in State Actions, Not on Transitions” on page 5-16

• “Restrict Data to Inputs, Outputs, and Constants” on page 5-18

• “Reference Input Only in C onditions” on page 5-19

• “Do Not Use Actions on Transitions” on page 5-20
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• “Do Not Use Graphical Functions” on page 5-20

• “Do Not Use Truth Tables or Embedded MATLAB™ Functions” on page
5-20

• “Restrict Use of Events” on page 5-21

• “Initialize Outputs Every Tim e Chart Wakes Up” on page 5-21

Compute Outputs in State Actions, Not on Transitions
To ensure that outputs depend solel y on current state, you must compute
outputs in state actions, subjec t to the following restrictions:

• “Combine During and Exit Actions” on page 5-16

• “Allow Actions in Leaf States Only” on page 5-17

• “Do Not Label State Ac tions” on page 5-18

You cannot define actions on transitions because transitions almost always
depend on inputs. For example, if you compute outputs in a condition action
on a transition, the chart updates outputs whenever there is a change on the
input — a violation of Moore semantics.

Combine During and Exit Actions. For Classic charts, you can define
different types of actions in states (see “State Action Types” on page 9-3).
Each action can consist of multiple command statements. In Moore charts,
you can include only one action per state, but the chart executes the action as
both a during and an exit action. This duality ensures that the chart never
exits a state before computing its outputs because:

• The chart executes the action while the state is active and there are no
valid transitions to take (like a during action)

• The chart also executes the action just before exiting the state to take a
valid transition (like an exit action)

In other words, all active states in Moore charts compute their outputs in a
consistent way whether an outer transition is valid or not.

To implement the duality of execution, the during and exit actions must be
identical, as in this example.
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Moore states do not differentiate between during and exit actions, as shown
here.

Note There are no labels on state actions in Moore charts (see “Do Not Label
State Actions” on page 5-18).

Allow Actions in Leaf States Only. In Moore charts, you can add actions
only to leaf states. A leaf state is a state that resides at the lowest level of
the Stateflow ® hierarchy and, therefore, does not parent any other states.
This restriction ensures that when you compute outputs in state actions,
the following is true:

• Outputs are not defined at multiple levels in the hierarchy with different
values.

• The same top-down semantics apply for executing Moore charts as for
Classic charts. In this way, charts compute outputs as if they evaluate
actions before inner and outer flow graphs. This behavior guarantees that
the outputs will be identical for both chart types.

You can compute outputs in leaf states that have exclusive (OR) or parallel
(AND) decomposition. However, you sh ould not compute the same outputs in
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sibling parallel (AND) states because the values computed by the last state
executed will prevail, overwriting the previously computed values.

For descriptions of chart execution semantics, see “Executing a Chart” on page
3-6 and Semantic Rules Summary.

Do Not Label State Actions. Do not label state actions in Moore charts
with any keywords — such as du, during , ex , or exit . State actions behave
in Moore charts as during and exit actions automatically, as explained
in “Combine During and Exit Actions” on page 5-16. Moore charts never
execute entry actions because these actions always execute as the result of a
transition and, therefore, depend on inputs.

Restrict Data to Inputs, Outputs, and Constants
You can define inputs, outputs, parameters, and constants in Moore charts,
but other data restrictions apply:

• “Do Not Define Local Data” on page 5-18

• “Restrict Machine-Parented Data t o Constants and Parameters” on page
5-19

• “Do Not Define Data Store Memory” on page 5-19

Do Not Define Local Data. You cannot define local data in Moore charts.
In Classic charts, you can use local da ta to transfer inputs to outputs, as
in this example:

local_D = input_U;
output_Y = local_D;

However, in Moore charts, you compute outputs from current state only, but
never from local data. When a chart conta ins local data, it cannot easily verify
that outputs do not depend on inputs.
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Restrict Machine-Parented Data to Constants and Parameters.
Machine-parented data is data that you d efine for a Stateflow machine, which
is the collection of Stateflow blocks in a Simulink ® model. The Stateflow
machine is the highest level of the Stateflow hierarchy. When you define
data at this level, every chart in the machine can read and modify the
data. To ensure that Moore charts do not access data that can be modified
unpredictably outside the chart, you can define only constants and parameters
at the machine level.

Note Chart parameters have constant value during simulation and code
generation.

Do Not Define Data Store Memory. You cannot define data store memory
(DSM) in Moore charts because DSM objects can be modified by objects
external to the chart. A Stateflow chart uses data store memory to share data
with a Simulink model. Data store memory acts as global data that can be
modified by other blocks and models in the Simulink hierarchy that contains
the chart. Moore charts should not acce ss data that can change unpredictably.

Reference Input Only in Conditions
In Classic Stateflow charts, you can tes t inputs in conditions on transitions,
and then modify outputs in associated condition actions and transition
actions. However, in Moore charts, outputs can never depend on inputs.
Therefore, you can set up conditions on t ransitions that reference inputs, but
you cannot add actions to transitions that modify outputs based on those
conditions. For example, you can use these transitions in a Moore chart.
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In this example, each transition tests input u in a condition, but modifies
output y in a state action.

By contrast, these transitions are illegal in a Moore chart.

Here, each transition tests input u in a condition, but modifies output y in a
condition action, based on the value of the input. This construct violates
Moore semantics and generates a compi ler error. Similarly, you cannot use
transition actions in Moore charts.

Do Not Use Actions on Transitions
You cannot define condition actions or t ransition actions in Moore charts (see
“Reference Input Only in Conditions” on page 5-19).

Do Not Use Graphical Functions
You cannot use graphical functions in Mo ore charts. This restriction prevents
scenarios that violate Moore semantics, such as:

• Adding conditions that call functions which compute outputs as a side effect

• Adding state actions that call functions which reference inputs

Do Not Use Truth Tables or Embedded MATLAB™ Functions
You cannot use truth tables or Embedded MATLAB™ functions in Moore
charts. These restrictions prevent v iolations of Moore semantics during
chart execution.
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Restrict Use of Events
You must limit the use of events in Moore charts as follows:

Do: Do Not:

Use input events to trigger the chart Broadcast any type of event

Use event-based temporal logic to
guard transitions

You can use event-based temporal
logic in Moore charts because
it behaves synchronously (see
“Operators for Event-Based
Temporal Logic” on page 9-58).
Think of the change in value of a
temporal logic condition as an event
that the chart schedules internally.
Therefore, at each time step, the
chart retains its notion of state
because it knows how many ticks
remain before the temporal event
executes.

Note In Moore charts, the base
event for temporal logic operators
must be a predefined event such as
tick or wakeup (see “Referencing
Implicit Events” on page 8-21).

Use local or machine-parented
events to guard transitions

You cannot use local or
machine-parented events in
Moore charts because they are not
deterministic. These events can
occur while the chart computes
outputs and, therefore, violate Moore
semantics that require charts to
compute outputs whenever input
changes.

Initialize Outputs Every Time Chart Wakes Up
To prevent latching of outputs, a Moore c hart automatically a pplies the initial
value of its outputs every time it wakes up. This requirement for Moore charts
ensures that outputs do not depend on previous values of outputs.

When you create a Moore chart, it automatically enables the chart property
Initialize Outputs Every Time Chart Wakes Up, which you cannot

5-21



5 Building Mealy and Moore Charts

disable. For more information about th is property, see “Setting Properties
for Individual Charts” on page 13-6.

Example: Moore Traffic Light
The following chart uses Moore semantics to model a traffic light.
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Logic of the Moore Traffic Light
In this example, the traffic light m odel contains a Moore chart called
Light_Controller, which operates in five traffic states. Each state represents
the color of the traffic light in two opposite directions — North-South and
East-West — and the duration of the c urrent color. The name of each state
represents the operation of the light vi ewed from the North-South direction.

This chart uses temporal logic to regulate state transitions. The after
operator implements a countdown timer, which initializes when the source
state is entered. By default, the timer provides a longer green light in the
East-West direction than in the North-South direction because the volume
of traffic is greater on the East-West road. The green light in the East-West
direction stays on for at least 20 clock ticks, but it can remain green as long as
no traffic arrives in the North-South direction. A sensor detects whether cars
are waiting at the red light in the North-South direction. If so, the light turns
green in the North-South direction to keep traffic moving.

The Light_Controller chart behaves l ike a Moore machine because it updates
its outputs based on current state before transitioning to a new state, as
follows:

When initial state Stop is active. Traffic light is red for North-South,
green for East-West.

• Sets output y1 = RED (North-South) based on current state.

• Sets output y2 = GREEN (East-West) based on current state.

• After 20 clock ticks, active state becomes StopForTraffic .

In active state StopForTraffic. Traffic light has been red for North-South,
green for East-West for at least 20 clock ticks.

• Sets output y1 = RED (North-South) based on current state.

• Sets output y2 = GREEN (East-West) based on current state.

• Checks sensor.

• If sensor indicates cars are waiting ( [sens] is true) in the North-South
direction, active state becomes StopToGo .
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In active state StopToGo. Traffic light must revers e traffic flow in response
to sensor.

• Sets output y1 = RED (North-South) based on current state.

• Sets output y2 = YELLOW (East-West) based on current state.

• After 3 clock ticks, active state becomes Go.

In active state Go. Traffic light has been red for North-South, yellow for
East-West for 3 clock ticks.

• Sets output y1 = GREEN (North-South) based on current state.

• Sets output y2 = RED (East-West) based on current state.

• After 10 clock ticks, active state becomes GoToStop .

In active state GoToStop. Traffic light has been green for North-South,
red for East-West for 10 clock ticks.

• Sets output y1 = YELLOW (North-South) based on current state.

• Sets output y2 = RED (East-West) based on current state.

• After 3 clock ticks, active state becomes Stop .

Design Rules in Moore Traffic Light
This example of a Moore traffic light ill ustrates the following Moore design
rules:

• The chart computes outputs in state actions.

• Actions appear in l eaf states only.

• Leaf states contain no more than one action.

• The chart tests inputs in conditions on transitions.

• The chart uses temporal logic, but no asynchronous events.

• The chart defines chart inputs ( sens ) and outputs ( y1 and y2 ).
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Changing Chart Type

The best practice is to not change from one Stateflow ® chart type to another in
the middle of development. You cannot automatically convert the semantics
of the original chart to conform to the design rules of the new chart type.
Changing type usually requires you to redesign your chart to achieve
equivalent behavior — that is, where both charts produce the same sequence
of outputs given the identical sequence of inputs. To assist you, diagnostic
messages appear at compile time (see “Debugging Mealy and Moore Charts”
on page 5-26). In some cases, however, there may be no way to translate
specific behaviors without violating chart definitions.

Here is a summary of what happens when you change chart types mid-design:

From To Result

Mealy Classic Mealy charts retain their semantics when changed to
Classic type.

Classic Mealy If the Classic chart confirms to Mealy semantic rules, the
Mealy chart exhibits equivalent behavior, provided that
output is defined at every time step.

Moore Classic State actions in the Moore chart behave as entry actions
because they are not labeled. Therefore, the Classic chart
will not exhibit behavior that is equivalent to the original
Moore chart. Requires redesign.

Classic Moore Actions th at are unlabeled in the Classic chart ( entry
actions by default) behave as during and exit actions.
Therefore , the Moore chart will not exhibit behavior that is
equivale nt to the original Classic chart. Requires redesign.

Mealy Moore

Moore Mealy

Converti ng between these two types does not produce
equivale nt behavior because Mealy and Moore rules about
placement of actions are mutually exclusive. Requires
redesign.
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Debugging Mealy and Moore Charts

At compile time, informative diagnostic messages appear to help you:

• Design Mealy and Moore charts from scratch

• Redesign legacy Classic charts to conform to Mealy and Moore semantics

• Redesign charts to convert between Mealy and Moore types

For example, recall the Mealy vending machine chart described in “Example:
Mealy Vending Machine” on page 5-12.

If you change the chart type to Moore and rebuild, you get the following
diagnostic messages:
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These diagnostics alert you to the f act that you cannot define actions on
transitions. Without actions, you cannot compute outputs on transitions
in Moore charts (see “Do Not Use Actions on Transitions” on page 5-20).
According to Moore semantics, you must instead compute outputs in state
actions (see “Design Rules for Moore Charts” on page 5-15).

In the Mealy chart, each condition action computes output ( whether or not
soda is released) based on input ( the coin received). Each state represents one
of the three possible coin inputs: nickel, dime, or no coin. The Mealy chart
computes the output as it transitions to the next state. When you move this
logic out of transitions and into state actions in the Moore chart, you need
more states. The reason is that in the Moore chart, each state must represent
not only coins received, but also the soda release condition. The Moore chart
must compute output according to the active state before considering input.
As a result, there will be a delay in releasing soda, even if the machine
receives enough money to cover the cost.

The equivalent vending machine, designed as a Moore chart, is as follows.
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This table compares the semantics of the two charts:

Mealy Vending Machine Moore Vending Machine

Uses 3 states Uses 5 states
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Mealy Vending Machine Moore Vending Machine

Computes outputs in condition
actions

Computes outputs in state actions

Updates output based on input Updates output before evaluating
input, requiring an extra time step
to produce the soda

Note For this vending machine, Mealy is a better modeling paradigm because
there is no delay in releasing soda once sufficient coins are received. By
contrast, the Moore vending machine requires an extra time step to pass
before producing soda. Since the Moor e vending machine accepts a nickel,
a dime, or no coin in a given time step, it is possible that the soda will be
produced in a time step in which a coin is accepted toward the next purchase.
In this situation, the delivery of a soda may appear to be in response to this
coin, but actually occurs because the ve nding machine received the purchase
price in previous time steps.
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Extending Stateflow ®

Charts

Using History Junctions to Extend
Charts and States (p. 6-3)

Describes how to create, move,
and specify properties for history
junctions that record the most
recently active substate of a state

Using Subcharts to Extend Charts
(p. 6-6)

Shows you how to create and work
with charts within charts, that is,
subcharts

Using Supertransitions to Extend
Transitions (p. 6-11)

Shows you how to make a
supertransition to connect
transitions from outside a subchart
to a state or junction inside a
subchart

Extending Transitions with Smart
Behavior (p. 6-18)

Shows you how smart transitions
maintain their shapes and
uniqueness while you rearrange
chart objects

Using Graphical Functions to
Extend Actions (p. 6-28)

Describes how to create and call
graphical functions in a Stateflow ®

chart

Using Boxes to Extend Charts
(p. 6-43)

Describes how to create boxes for
grouping objects in your charts
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Using Notes to Extend Charts
(p. 6-50)

Shows you how to create, edit, and
delete descriptive notes for your
chart

Printing Stateflow ® Charts (p. 6-53) Shows you how to print part or all
of your chart
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Using History Junctions to Extend Charts and States

In this section...

“About History Junctions” on page 6-3

“Creating a History Junction” on page 6-3

“Changing History Junction Size” on page 6-4

“Changing History Junction Properties” on page 6-4

About History Junctions
History junctions extend the ability of charts and states by recording the
activity of substates inside superstates. Use a history junction in a chart or
superstate to indicate that its last act ive substate becomes active when the
chart or superstate becomes active.

Creating a History Junction
To create a junction, do the following:

1 In the Statef low® Editor toolbar, click the History Junction icon .

2 Move your pointer into the Stateflow Editor.

The pointer takes on the shape of a junction.

3 Click to plac e a history junction inside the state whose last active substate
it records.

To create mul tiple history junction s, do the following:

1 In the Statef low Editor toolbar, double-click the History Junction icon.

2 The button is now in multiple object mode.

3 Click anywhere in the drawing area to place a history junction.

4 Move to and click another location to create an additional history junction.
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5 Click the History Junction icon or press the Esc key to cancel the
operation.

To move a history junction to a new location, click and drag it to the new
position.

Changing History Junction Size
To change the size of junctions, do the following:

1 Select the history junctions w hose size you want to change.

2 Place your pointer over one of the junctions and right-click.

3 In the resulting submenu, place your pointer over Junction Size.

A menu of junction sizes appears.

4 Select a size from the menu of junction sizes.

Changing History Junction Properties
To edit the properties for a junction, do the following:

1 Right-click a junction.

2 In the resulting submenu, select Properties.

The History Junction dialog appears as shown.
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3 Edit the fields in the properties dialog, which are described in the following
table:

Field Description

Parent Parent of this history junction; read-only; click
the hypertext link to bring the parent to the
foreground.

Description Textual description/comment.

Document Link Enter a URL address or a general
MATLAB ® command. Examples are
www.mathworks.com , mailto:email_address ,
and edit/spec/data/speed.txt .

4 When finished editing, se lect one of the following:

• Select the Apply button to save the changes.

• Select the Cancel button to cancel any changes you’ve made.

• Select OK to save the changes and close the dialog box.

• Select the Help button to display the Stateflow online help in an HTML
browser window.
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Using Subcharts to Extend Charts

In this section...

“What Is a Subchart?” on page 6-6

“Creating a Subchart” on page 6-7

“Manipulating Subcharts as Objects” on page 6-8

“Opening a Subchart” on page 6-9

“Editing a Subchart” on page 6-10

“Navigating Subcharts” on page 6-10

What Is a Subchart?
You can create charts within charts. A chart that is embedded in another
chart is called a subchart. The subchart can contain anything a top-level chart
can, including other subcharts. In fact, you can nest subcharts to any level.

A subcharted state is a superstate of the states and charts that it contains.
It appears as a block with its name in the block center. However, you can
define actions and default transitions for subcharts just as you can for
superstates. You can also create transitions to and from subcharts just as
you can create transitions to and from superstates. Further, you can create
transitions between states residing ou tside a subchart and any state within
a subchart. The term supertransition refers to a transition that crosses
subchart boundaries in this way. See “Using Supertransitions to Extend
Transitions” on page 6-11 for more information.

Subcharts enable you to reduce a complex chart to a set of simpler,
hierarchically organized charts. This makes the chart easier to understand
and maintain. Nor do you have to worry about changing the semantics of
the chart in any way. Subchart boundaries are ignored during simulation
and code generation.

Subcharts define a containment hie rarchy within a top-level chart. A
subchart or top-level chart is the parent of the charts it contains at the first
level and an ancestor of all the subcharts contained by its children and their
descendants at lower levels.
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Creating a Subch art
You create a subchart by converting an existing state, box, or graphical
function into th e subchart. The object to be converted can be one that you
have created expressly for the purpose of making a subchart or it can be an
existing objec t whose contents you want to turn into a subchart.

To convert a new or existing state, box, or graphical function to a subchart:

1 Select the object and right-click a state to display the shortcut menu for
that state.

2 Select Make Contents from the resulting menu.

3 Select Subcharted from the resulting submenu.

This act ion converts the state (or a graphical function or box) to a subchart.
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Note When you convert a box to a subchart, the subchart retains the
attributes of a box. In particular, the resulting subchart’s position in the chart
determines its activatio n order (see “Using Boxes to Extend Charts” on page
6-43 for more information).

To convert the subchart back to its original form, right-click the subchart.
In the pop-up menu that results, select Make Contents. In the resulting
submenu, select Subcharted.

Caution You cannot undo the operation of converting a subchart back to its
original form. When you perform this o peration, the undo and redo buttons
are disabled from undoing and redoing any prior operations.

Manipulating Subcharts as Objects
Subcharts also act as individual obje cts. You can move, copy, cut, paste,
relabel, and resize subcharts as you would states and boxes. You can also
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draw transitions to and from a subchart and any other state or subchart at the
same or different levels in the chart hierarchy (see “Using Supertransitions to
Extend Transitions” on page 6-11).

Opening a Subchart
Opening a subchart allows you to vie w and change its contents. To open a
subchart, do one of the following:

• Double-click anywhere in the box that represents the subchart.

• Select the box representing the subchart and press the Enter key.

The contents of the subchart appear, as shown.

A shaded border surrounds the contents of the subchart. The border displays
supertransitions.

To return to the previous view, select Back from the shortcut menu, press the
Esc key on your keyboard, or select the up or back arrow on the toolbar.
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Editing a Subcha rt
After you open a s ubchart (see “Opening a Subchart” on page 6-9), you can
perform any edit ing operation on its contents that you can perform on a
top-level chart . This means that you can create, copy, paste, cut, relabel, and
resize the stat es, transitions, and subcharts in a subchart. You can also group
states, boxes, and graphical functions inside subcharts.

You can also cut and paste objects between different levels in your chart. For
example, to copy objects from a top-level chart to one of its subcharts, first
open the top-l evel chart and copy the objects. Then open the subchart and
paste the objects into the subchart.

Transitions f rom outside subcharts to states or junctions inside subcharts are
called supertransitions. You create supertransitions differently than you do
ordinary tra nsitions. See “Using Supertransitions to Extend Transitions” on
page 6-11 for in formation on creating supertransitions.

Navigating Subcharts
The Statefl ow® Editor toolbar contains a set of buttons for navigating a
chart’s sub chart hierarchy.

Tool Description

If the Stateflow Editor is displaying a subchart, replaces the
subchart with the subchart’s parent in the Stateflow Editor. If
the Stateflow Editor is displayi ng a top-level chart, this button
raises the Simulink ® model window containing that chart.

Returns to the chart that you visited before the current chart.
Lets you navigate up the hierarchy.

Returns to the chart that you visi ted after visiting the current
chart. Lets you navigate down the hierarchy.

Note You can also use the key sequence .. (that is, press the period key twice)
to naviga te up to the parent object for a subcharted state, box, or function.
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Using Supertransitions to Extend Transitions

In this section...

“What Is a Supertransition?” on page 6-11

“Drawing a Supertransition Into a Subchart” on page 6-12

“Drawing a Supertransition Out of a Subchart” on page 6-15

“Labeling Supertran sitions” on page 6-16

What Is a Supertransition?
A supertransition is a transition between different levels in a chart, for
example, between a state in a top-level chart and a state in one of its
subcharts, or between states residing in different subcharts at the same or
different levels in a chart. You can cre ate supertransitions that span any
number of levels in your chart, for example, from a state at the top level to a
state that resides in a subchart several layers deep in the chart.

The point where a supertransition enters or exits a subchart is called a slit.
Slits divide a supertransition into graphical segments. For example, the
following chart shows two supertransitions as seen from the perspective of a
subchart and its parent chart, respectively.
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In this example, supertransition t 1 goes from state A in the parent chart
to state C in the subchart and supert ransition t2 goes from state C in the
subchart to state B in the parent chart. Note that both segments of t1 and t2
have the same label.

Drawing a Supertransition Into a Subchart
Use the following steps to draw a super transition from an object outside a
subchart to an object inside the subchart.

Caution You cannot undo the operation of drawing a supertransition. When
you perform this operation, the undo and redo buttons are disabled from
undoing and redoing any prior operations.
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1 Position your pointer over the border of the state.

The pointer assumes the crosshairs shape.

2 Drag the mouse.

Dragging the mouse causes a supertr ansition segment to appear. The
segment looks like a regular transit ion. It is curved and is tipped by an
arrowhead.

3 Drag the seg ment’s tip anywhere just inside the border of the subchart.

The arrowhead now penetrates the slit.

If you are not happy with the initial po sition of the slit, you can continue to
drag the slit around the inside edge of the subchart to the desired location.

4 Continue dragging your pointer toward the center of the subchart.

A wormhole appears in the center of the subchart.
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A wormhole allows you to open a subchart while drawing a supertransition.

5 Drag your pointer over the center of the wormhole.

The subchart op ens. Now the wormhole and supertransition are visible
inside the sub chart.

6 Drag and drop the tip of the supertransition anywhere on the border of the
object that you want to terminate the transition.
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Note If the terminating object resides within a subchart in the current
subchart, continue to drag the tip of the supertransition through the
wormhole of the inner subchart and complete the connection inside the
inner chart. In this way, you can draw a supertransition to an object at any
subchart depth in the chart.

Drawing a Supertransition Out of a Subchart
Use the following steps to draw a sup ertransition out of a subchart.

Caution You cannot undo the operation of drawing a supertransition. When
you perform this operation, the undo and redo buttons are disabled from
undoing and redoing any prior operations.

1 Draw an inner transition segment fr om the source object anywhere just
outside the border of the subchart

A slit appears as shown.

2 Keep draggi ng the transition away from the border of the subchart.

A wormhole appears.
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3 Drag the transition down the wormhole.

The parent of the subchart appears.

4 Complete the connection.

Note If the parent chart is itself a subchart and the terminating object
resides at a higher level in the subchart hierarchy, you can continue
drawing by dragging the supertrans ition into the border of the parent
subchart. This allows you to continue drawing the supertransition at the
higher level. In this way, you can connect objects separated by any number
of layers in the subchart hierarchy.

Labeling Supertransitions
A supertransition is displayed with multi ple resulting transition segments for
each layer of containment traversed. For example, if you create a transition
between a state outside a subchart and a state inside a subchart of that
subchart, you create a supertransition w ith three segments, each displayed at
a different containment level.
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You can label any one of the transition segments constituting a supertransition
using the same procedure used to label a regular transition (see “Labeling
Transitions” on page 4-18). The resulting label appears on all the segments
that constitute the supertransition. A lso, if you change the label on any one of
the segments, the change appears on all segments.
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Extending Transitions with Smart Behavior

In this section...

“About Smart Behavior Transitions” on page 6-18

“Setting Smart Behavior in Transitions” on page 6-18

“What Smart Transitions Do” on page 6-19

“What Nonsmart Transitions Do” on page 6-25

About Smart Behavior Transitions
Transitions with smart behavior — known as smart transitions — attach
their ends to the surfaces of Stateflow ® objects and, therefore, maintain their
shapes and uniqueness when y ou rearrange chart objects.

Setting Smart Behavior in Transitions
Transitions are automatically created with smart behavior, on the assumption
that this behavior is desirable in most circumstances. You can disable or
enable smart behavior in existing transitions with the following procedure:

1 Right-click a transition.

On the resulting menu, observe the selection titled Smart. If a check mark
appears in front of Smart, the transition has smart behavior.

2 If Smart is not checked, select it to enable smart behavior.

To disable smart transition behavior, select Smart if it is already checked.

See the following sections for a comparison of behavior between smart and
nonsmart transitions:

• “What Smart Transitions Do” on page 6-19

• “What Nonsmart Transitions Do” on page 6-25
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Note Transitions with smart behavior di ffer graphically only. Apart from
graphical behavior, there is no diffe rence in meaning between a transition
with and without smart behavior.

What Smart Transitions Do
The following topics discuss some of the behaviors of smart transitions:

• “Smart Transitions Slide Around Surfaces” on page 6-19

• “Smart Transitions Slide and Maintain Shape” on page 6-21

• “Smart Transitions Connect States to Junctions at 90 Degree Angles” on
page 6-22

• “Smart Transitions Snap to an Invisible Grid” on page 6-23

• “Smart Transitions Bow Symmetrically” on page 6-24

Smart Transitions Slide Around Surfaces
In the following example, state B is attached to state A by a smart transition.
The example shows state B being dragged counterclockwise around the upper
right corner of state A. When this occurs, state B turns to its selection color
and the transition turns to a very ligh t shade of gray, a sure sign of smart
behavior. Dragging direction is shown by the arrows.

6-19



6 Extending Stateflow® Charts

1 2 3

4 5 6

Note the following step -by-step behavior for the preceding example:

1 The first capture shows states A and B at the beginning of movement.

2 As B moves upward, the transition’s back end slides upward on A,
maintaining the transition straight.

3 As B moves around A’s corner, the back e nd of the transition suddenly hops
around A’s upper right-hand corner. The transition is now curved from
A’s top surface to B’s left side, maint aining perpendicularity with each
attached state side.

Note A hop around a state’s corner is a nec essity because transitions are
restricted from attaching at corners of states.

4 As B moves on top of A, the transition stays curved but its front end slides
down to B’s lower left-hand corner.

5 As B continues to move to the left over A, the transition’s front end hops
around B’s lower left-hand corner.

6-20



Extending Transitions with Smart Behavior

6 Finally, as B moves directly over A, the transition’s front end slides onto
B’s bottom edge.

As B continues to circle A, steps 1 through 6 repeat for each of A’s remaining
sides.

Smart Transitions Slide and Maintain Shape
While transitions with smart behavior allow their ends to slide around the
surfaces of their connected objects, they also attempt to maintain their
original shape during moving. In the following example, a pair of transitions
with smart behavior slide during a resizing to maintain their original shape.

1 2 3

In the following example, the ends of a pa ir of transitions with smart behavior
emanate from a junction and terminate in a state. As the junction is dragged
around the state, the ends slide around the state and maintain the same
relative spacing between each other. Direction is indicated by the arrows.

1 2 3
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Smart Transitions Connect States to Junctions at 90 Degree
Angles
Straight-line connections to states mu st be in one of four directions: left,
right, up, or down. To maintain their s traightness, smar t transitions from
junctions always seek to connect to a state through equivalent locations on
the junction (left, right, top, bottom). In the following example, a junction is
connected to two states, A and B. Watch the behavior of two straight smart
transitions as the junction is moved to different locations.

1 2 3

4 5 6

1 The junction starts with two straight s mart transition connections to states
A and B.

2 The junction connects to state A through its left side. Since the junction
is below A, only a curved connection is possible.

State B could be connected by a straight line through the junction’s left
side, but this is already occupied by the c onnection to A. Therefore, B is
connected through the junction’s bottom, and must be curved.
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3 The junction connects to B by a straight transition through the junction’s
top connection. No straight-line connection to A is possible, therefore the
junction is connected to state A with a curved transition through its left
side.

4 At this location (under A, to the left o f B), straight-line transitions to A
and B are possible from the junction’s top and right connection points,
respectively.

5 At the location left of state A, the junction connects to state B through
its right connection point. Since the junction is above B, only a curved
connection is possible.

6 Above A, a straight-line transition to state A is possible through the
junction’s bottom connector. A straig ht-line connection to state B is not
possible, so the junction is connected t o state B through a curved transition
from its right connection.

Smart Transitions Snap to an Invisible Grid
Junctions that are connected to other junctions with smart transitions will
snap to an invisible grid consisting of horizontal and vertical lines that pass
through the center of each junction. The following example depicts this
behavior.

1 2 3

Here, the invisible grid is depicted for each of the three junctions by dashed
vertical and horizontal lines. Each junction is connected to each other through
nonlinear smart transitions:
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1 In the first scene, the snap grid for each junction does not overlap. The
arrow indicates that junction A is being moved toward the vertical snap
line for junction B.

2 When A is within a very small distance of B’s snap line, A snaps into
position directly above B and centered in its vertical snap line. The arrow
indicates that A is now being moved toward the horizontal snap line for
junction C.

3 When A is within a very small distance of C’s horizontal snap line, A snaps
into position directly to the side of C an d centered in its horizontal snap line.

Smart Transitions Bow Symmetrically
Transitions with smart behavior bow symmetrically between junctions. In
the following examples, transitions with smart behavior are drawn between
two junctions:

1 2 3

1 In the first case, a transition origin ates at the junction on the left and
terminates on the left side of the righ t junction. This results in a straight
line.

2 In the second case, a transition originates at the junction on the left and
terminates on the top of the right junc tion. This results in a transition
line bowed up.

3 In the third case, a transition originates at the junction on the left and
terminates on the right side of the right junction. This results in a
transition line bowed up even more.
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Bowed smart transitions maintain symmetry by maintaining equality
between transition entry and exit angles as shown below.

You can bow a smart transition between two junctions to any degree by placing
your pointer on any point in the transition (except the attachment points) and
clicking and dragging in a direction perpe ndicular to a straight line connecting
the two junctions. You can move the mouse in any direction to bow the
transition but only the component perpe ndicular to the straight line applies.

Disabling smart behavior for a transiti on allows you to distort the transition
asymmetrically (see section “Nonsmart Transitions Distort Asymmetrically”
on page 6-26). However, if you enable smart behavior again, the transition
automatically returns to its p rior symmetric bowed shape.

What Nonsmart Transitions Do
The following topics describe some of th e behavior exhibited by transitions
without smart behavior.

• “Nonsmart Transitions Anchor Connection Points” on page 6-25

• “Nonsmart Transitions Distort Asymmetrically” on page 6-26

You can disable and enable smart behavior in transitions. See the section
“Setting Smart Behavior in Transitions” on page 6-18.

Nonsmart Transitions Anchor Connection Points
Contrast the example in the section “Smart Transiti ons Slide Around
Surfaces” on page 6-19 with the example shown below.
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1 2 3

4 5 6

A nonsmart transition connects state A to state B. The pointer is then placed
over state B and clicked and dragged to new locations counterclockwise
around A. When this occurs, state B turns to its highlight color but the
transition remains unchanged, a sure sign of a nonsmart transition.

As B is moved around A, the transition changes into a distorted curve that
maintains the original attachment points. These remain unchanged in
position, although the angle of attachment is always perpendicular to the
side of the state.

Nonsmart Transitions Distort Asymmetrically
Simply by clicking and dragging on different locations along a transition
without smart behavior, you can reshape it into an asymmetric curve suited to
your individual preferences. This is illustrated in the following example:
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1 2 3

For this example, use the following procedure:

1 Drag a horizontal transition between two junctions.

2 Right-click th e transition and select Smart from the resulting shortcut
menu to disabl e smart behavior.

3 Place your pointer anywhere on the transition.

4 Click and drag your pointer up and to the left.
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Using Graphical Functions to Extend Actions

In this section...

“What Is a Graphical Function?” on page 6-28

“Why Use a Graphical Function?” on page 6-28

“Where to Use a Graphical Function” on page 6-28

“Workflow for Defining a Graphical Function” on page 6-29

“Managing Large Graphical Functions” on page 6-33

“Calling Graphical F unctions in Stateflow ® Action Language” on page 6-35

“Exporting Chart-Level Graphical Functions” on page 6-36

“Specifying Graphical Function Properties” on page 6-41

What Is a Graphical Function?
A graphical function is a program th at you write with flow graphs using
connective junctions and transitions. You create a graphical function, fill
it with a flow graph, and call it many times in the actions of states and
transitions.

Why Use a Graphical Function?
A graphical function is easier to create, access, and manage than a textual
function, such as a C or MATLAB ® function that you must define externally.
Like a textual function, a graphical function can accept arguments and return
values. Unlike a textual function, a graphical function is a native Stateflow ®

object. You use the Stateflow Editor to create a graphical function that resides
in your model along with the charts that invoke the function.

Where to Use a Graphical Function
A graphical function can reside anywh ere in a chart, state, or subchart.
The location of a function determines its scope, that is, the set of states and
transitions that can call the function. In particular, graphical functions
are visible to the chart, to the parent state and its parents, and to sibling
transitions and states. These exceptions apply:
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• If the chart containing the function exports its graphical functions, the
scope of the function is the entire Stateflow machine, which encompasses all
the charts in the model. See “Exporting Chart-Level Graphical Functions”
on page 6-36 for more information.

• A function that you define in a state or subchart overrides any functions of
the same name in the parents and ancestors of that state or subchart.

Workflow for Defining a Graphical Function

Creating a Graphical Function
Use these steps to create a graphical function in your chart:

1 Click the graphical function icon in the Stateflow Editor toolbar:

2 Move your pointer to the location for the new graphical function in your
chart and click to insert the function box.

3 Enter the function signature.

The function signature specifies a name for your function and the formal
names for its arguments and return values. A signature has this syntax:

[r 1, r 2,..., r n] = func(a 1,a 2,..., a n)

where func is the name of your function, a1, a2, ..., an are formal names for
its arguments, and r 1, r 2, ..., r n are formal names for its return values.

Note You can define arguments and return values as scalars, vectors, or
2-dimensional matrices of any data type.

4 Click outside of the function box.
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The following signature is for a graphical function that has the name f1 , which
takes three arguments ( a, b, and c) and returns three values ( x, y, and z).

Note You can use the Stateflow Editor to change the signature of your
graphical function at any time. After you edit the signature, the Model
Explorer updates to reflect the changes.

Programming a Graphical Function
To program a graphical function, follow these steps:

1 Click the default transition icon in the Stateflow Editor toolbar:

2 Move your pointer inside the function box in your chart and click to insert
the default transition and i ts terminating junction.

3 Enter transition conditions and acti ons for your graphical function. If
necessary, add connective junctions and transitions to your function.

Note Connective junctions and transitions are the only graphical elements
you can use in a graphical function. Because a graphical function must
execute completely when you call it, you cannot use states.
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This function box shows a flow graph th at returns different products of its
arguments.

Defining Graphical Function Data
You must define the data in your graphical function:

1 In the Stateflow Editor, select View > Model Explorer.

The signature for your function appears as a property of its parent chart in
the Contents pane of the Model Explorer.

6-31



6 Extending Stateflow® Charts

2 Expand the parent object in the Mode l Explorer, so that you can see the
return values and arguments of the fun ction signature as data items that
belong to your graphical function.

The Scope column in the Model Explorer indicates the role of each
argument or return value. Arguments have the scope Input , and return
values have the scope Output .

3 For each function argument and return value, right-click the data row in
the Model Explorer and select Properties from the context menu.

4 In the D ata properties dialog for each argument and return value, specify
the dat a properties.

These rules apply:

• Each argument and return value can be a scalar or matrix of values.

• Arguments cannot have initial values.

5 Create any additional data items that your function must have to process
its programming.
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Your function can access its own data or data belonging to parent states or
the chart. The data items that you create for the function itself can have
one of these scopes:

• Local

Local data persists from one function call to the next.

• Temporary

Temporary data initializes at the start of every function call.

• Constant

Constant data retains its initial v alue through all function calls.

Note You can initialize your function data (other than arguments and
return values) from the MATLAB workspace. However, you can save only
local items to this workspace.

Managing Large Graphical Functions
You can make your graphical function as large as you want, as shown below.
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However, if your function grows too large, you can hide its contents by
right-clicking inside the function box and selecting Make Contents >
Subcharted from the context menu. This option makes your graphical
function opaque.

To access the programming of your subcharted graphical function, double-click
it. This action dedicates the entire chart window to programming your
function.
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To access your original chart, click the Back button .

Calling Graphical Functions in Stateflow ® Action
Language

Description
To call your graphical function, use Stateflow action language. Any state or
transition action in the scope of your function can perform a function call.
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Syntax
Syntax for a function call is the same as that of a function signature, with
actual arguments replacing the formal ones specified in a signature. If the
data types of the actual and formal argument differ, a function casts the
actual argument to the type of the formal argument.

See “Creating a Graphical Function” on page 6-29 for information about
syntax for a function signature.

Example
In this example, a state entry action calls a graphical function that returns
three products.

Exporting Chart-Level Graphical Functions

Why Export Graphical Functions?
When you export chart-level graphical functions, you extend the scope of your
functions to all other charts in your model.

Note To export functions in library charts, you must link those charts to
your main model.

How to Export Chart-Level Graphical Functions
Perform these steps to export graphical functions to your main model:
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1 Open the chart where your graphical function resides.

2 In the Stateflow Editor, select File > Chart Properties.

3 In the Chart Properties dialog, select Export Chart Level Graphical
Functions (Make Global).

4 If your function resides in a library chart, link that chart to your main
model.

Example of Exporting Chart-Level Graphical Functions
This example describes how to export gr aphical functions in library charts
to your main model.

1 Create these objects:

• Add a model named main_model , with a chart named modChart .

• Add a library model named lib1 , with a chart named lib1Chart .
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• Add a library model named lib2 , with a chart named lib2Chart .

2 Creat e these graphical functions:

• For modChart , add this graphical function.
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• For lib1Chart , add this graphical function.

• For lib2Chart , add this graphical function.

3 Add a default transition to modChart .

4 For each chart, select File > Chart Properties in the Stateflow Editor.

5 In the properties dialog for each chart, select the Export Chart Level
Graphical Functions (Make Global) option.
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6 Drag lib1Chart and lib2Chart into main_model from lib1 and lib2 ,
respectively.

Each chart now defines a graphical function that any chart in main_model
can call.

After you export your graphical functions from the library charts, the
sequence of actions in main_model is:

1 modChart calls the graphical function lib1_func , which takes two
arguments, x and y.

2 lib1_func calls the graphical function lib2_func , which passes the same
two arguments.

3 lib2_func calls the graphical function mod_func , which adds x and y.

4 x takes the result of the addition.
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Specifying Graphical Function Properties
You can set general properties for your graphical function through its
properties dialog:

1 Right-click your graphical function box.

2 Select Properties from the context menu.

The properties dialog for your graphical function appears.

The fields in the properties dialog are:

Field Descript ion

Name Click thi s read-only function name to bring your
function to the foreground in its native chart.

Breakpoints Select Function Call to set a breakpoint that pauses
simulat ion when your graphical function executes.
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Field Description

Function Inline
Option

Select one of these options to control the inlining of
your function in generated code:

• Auto
Decides whether or not to inline your function
based on an internal calculation.

• Inline
Inlines your function as long as you do not export it
to other charts, and it is not part of a recursion. (A
recursion exists if your function calls itself directly
or indirectly through a nother function call.)

• Function
Does not inline your function.

Label Specify the signature label for your function in this
field. See “Creating a Graphical Function” on page
6-29 for more information.

Description Enter a textual description or comment.

Document Link Enter a URL address or a general
MATLAB command. Examples are
www.mathworks.com , mailto:email_address ,
and edit/spec/data/speed.txt .
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Using Boxes to Extend Charts

In this section...

“When to Use Boxes” on page 6-43

“Semantics of Boxes” on page 6-43

“Rules for Using Boxes” on page 6-44

“Drawing and Editing a Box” on page 6-44

“Examples of Using Boxes” on page 6-46

When to Use Boxes
Use boxes to organize graphical objects in your chart.

Semantics of Boxes

Visibility of Graphical Objects in Boxes
Boxes add a level of hierarchy to Stateflow ® charts. This property affects
visibility of functions and states insi de a box to objects that reside outside of
the box. If you refer to a box-parented f unction or state from a location outside
of the box, you must include the box name in the path. See “Using a Box
to Group Functions” on page 6-46.

Activation Order of Parallel States
Boxes affect the implicit activation orde r of parallel states in a chart. Parallel
states within a box wake up before other parallel states that are lower or to
the right in that chart. Within a box, p arallel states wake up in top-down,
left-right order. See “Using a Bo x to Group States” on page 6-48.

Note To specify activation order manu ally, you must enable the option User
specified state/transition execution order in the Chart properties dialog
box.
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Rules for Using Boxes
When you use a box, these rules apply:

• You must include the box name in the path when you refer to a box-parented
function or state from a location outside of the box.

• You can move or draw graphical objec ts inside a box, such as functions
and states.

You can draw a state around the objects you want inside it and then convert
that state to a box. See “Changing a State to a Box” on page 6-46.

• You can add data to a box so that all the elements in the box can share
the same data.

• You can group a box and its contents into a single graphical element. See
“Grouping States” on page 4-8.

• You can subchart a box to hide its elements. See “Using Subcharts to
Extend Charts” on page 6-6.

• You cannot define action statements for a box, such as entry , during , and
exit actions.

• You cannot define a transition to or from a box. However, you can define a
transition to or from a state within a box.

Drawing and Editing a Box

Creating a Box
You create boxes by drawing them in the Stateflow Editor with the box tool
shown below.
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1 Select the Box tool.

2 Move your pointer into the drawing area.

In the drawing area, your pointer becomes box-shaped.

3 Click in a particular location to create a box.

The new box appears with a question mark (?) name in its upper left corner.

4 Click the question mark label.

A text cursor appears in place of the question mark.

5 Enter a name for the box and then click outside of the box.
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Deleting a Box
To delete a box, click it to select it and choose Edit > Cut from the context
menu or press the Delete key.

Changing a State to a Box
You can change an existing state to a box and back to a state with this
procedure:

1 Right-click the state.

2 From the context menu, select Type.

A submenu appears adjacent to the context menu.

3 From the submenu, select Box.

This action converts the state to a box, redrawing its border with sharp
corners to indicate its changed status.

4 Repeat the preceding steps on the box and select State from the submenu
instead of Box to change the box to a state.

Examples of Using Boxes

Using a Box to Group Functions
This chart shows a box named Status that groups together Embedded
MATLAB™ functions.
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Chart execution takes place as follows:

1 The state Cold activates first.

2 Upon entry , the state Cold invokes the Embedded MATLAB function
Status.ms gCold .

This function displays a status me ssage that the temperature is cold.

Note Because the Embedded MATLAB function resides inside a box, the
path of the function call must include the box name Status . If you omit
this prefix, an error message appears.

3 If the value of the input data temp exceeds 80, a transition to the state
Warmoccurs.

4 Upon entry, the state Warminvokes the Embedded MATLAB function
Status.msgWarm .

This func tion displays a status message that the temperature is warm.

6-47



6 Extending Stateflow® Charts

Note Because the Embedded MATLAB function resides inside a box, the
path of the function call must include the box name Status . If you omit
this prefix, an error message appears.

5 If the value of the input data temp drops below 60, a transition to the state
Cold occurs.

6 Steps 2–5 repeat until the simulation ends.

Using a Box to Group States
This chart shows a box named Status that groups together related states.

The main ideas of this chart are:

• The stat e Temp wakes up first, followed by the state Wind_Chill . Then,
the stat e Monitor wakes up.
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Note This implicit activation order occurs because Temp and Wind_Chill
reside in a box. If you remove the box, the implicit activation order changes,
as shown, to: Temp, Monitor , Wind_Chill .

• Based on the input data temp , transitions between substates occur in the
parallel states Status.Temp and Status.Wind_Chill .

• When the transition from Status.Temp.Cold to Status.Temp.Warm occurs,
the transition condition in(Status.Temp.Warm) becomes true.

• When the transition from Status.Temp.Warm to Status.Temp.Cold occurs,
the transition condition in(Status.Temp.Cold) becomes true.

Note Because the substates Status.Temp.Cold and Status.Temp.Warm
reside inside a box, the argument of the in operator must include the
box name Status . If you omit this prefix, an error message appears. For
information about the in operator, see “Checking State Activity” on page
9-89.

6-49



6 Extending Stateflow® Charts

Using Notes to Extend Charts

In this section...

“Creating Notes” on page 6-50

“Editing Existing Notes” on page 6-50

“Changing Note Font and Color” on page 6-51

“Moving Notes” on page 6-52

“Deleting Notes” on page 6-52

Creating Notes
You can enter comments/notes in any lo cation on the chart with the following
procedure:

1 Place your pointer at the desired location in the Stateflow ® chart.

2 Right-click the mouse.

3 From the resul ting menu, select Add Note.

A blinking cursor appears at the location you selected. Default text is italic,
9 point.

4 Begin typing your comments.

As you type, th e text moves left to right.

5 Press the Return key to start a new line.

6 When finished typing, click outside the typed note text.

Editing Existing Notes
To edit existing note text,

1 Left-click the mouse on the co mment location you want to edit.

2 Once the blin king cursor appears, begin typing or use the arrow keys to
move to a new t ext location.
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Changing Note Fo nt and Color
To change font an d color for your chart notes, fo llow the procedures described
in the section “S pecifying Colors and Fonts” on page 4-31.

You can also change your note text to bold or italic text by doing the following:

1 Right-click the note text.

2 From the resulting shortcut menu, select Text Format.

3 From the resulting submenu, select Bold or Italic (default).

TeX Instructio ns
In the preceding procedure, note a third selection of the Text Format
submenu called TeX Instructions. This selection sets the text Interpreter
property to Tex , which allows you to use a subset of TeX commands embedded
in the string to produce special characters such as Greek letters and
mathematical symbols.

The TeX Instructions selection is used in the following example:

1 Right-click the text of an example note.

2 In the resulti ng shortcut menu, select Text Format.

3 In the submenu that results, make sure that TeX Instructions has a
check mark positioned in front of it. Otherwise, select it.

4 Click the note text to place your pointer in it.

5 Replace the existing note text with the following expression.

\it{\omega_N = e^{(-2\pii)/N}}

6 Click outside the note.

The note now h as the following appearance:
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Moving Notes
To move your notes,

1 Place your pointer over the text of the note.

2 Click and drag the note to a new location.

3 Release the left mouse button.

Deleting Notes
To delete your no tes, do the following:

1 Place your point er over the text of the note.

2 Click and hold the left mouse button on the note.

A dim rectangle appears surrounding the note.

3 Select the Delete key.

Alternatively, you can also do the following:

1 Place your point er over the text of the note.

2 Right-click the note.

3 From the resulting shortcut menu, select Cut.
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Printing Stateflow ® Charts

In this section...

“Printing a Chart” on page 6-53

“Generating a Model Report” on page 6-55

“Printing the Current Chart” on page 6-58

Printing a Chart
The Print option prints a copy of the current chart loaded in the Stateflow ®

Editor. You can also select to print subcharts of the current chart or the chart,
subcharts, and Simulink ® subsystems that contain the current chart.

Print a copy of a chart by following these steps:

1 Open the chart or subchart you want to print.

2 In the Stateflow Editor, select File > Print.

The Print Model dialog box appears as follows:
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In the P rint Model dialog box, select the printer for this report and one of
these options for the type of report you receive:

• Current system – Prints the current chart or subchart in view in the
Statef low Editor.

• Current system and above – Prints the current chart or subchart in view
in the Stateflow Editor and all the subcharts and Simulink subsystems
that c ontain it.

• Current system and below – Prints the current chart or subchart in view
in the Stateflow Editor and all the subcharts that it contains.
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• All systems – Prints the current chart or subchart in view in the Stateflow
Editor, all the subcharts that it contains, and all the subcharts and
Simulink subsystems that contain it.

Enhance a report with these options:

• Enable tiled printing for all systems — Enables tiled printing for all
systems in your model and overrides any individual tiled-print settings.

For more information, see “Tiled Printing” in the Simulink documentation.

• Include Print Log — Includes a list of all printed charts as a preface to
the print report.

• Look under mask dialog — Applies only to the masked subsystems that
might appear in Simulink subsystems that are printed with the report
options Current system and below and All systems.

• Expand unique library links — Applies only to the library blocks that
might appear in Simulink subsystems that are printed with the report
options Current system and below and All systems.

• Frame — Prints a title block frame that you specify in the adjacent field
on each chart in the report.

Note This option is also available in the Simulink model window. See
“Printing a Block Diagram” in the Simulink software documentation for
more information on the preceding options and on the behavior of this
command as used in the Simulink model window. The information in
this topic describes the behavior of this option only when you use it in
the Stateflow Editor.

Generating a Model Report
The Print Details report is an extension of the Print Details report in the
Simulink model window. It provides a report of Stateflow and Simulink
objects relative to the chart currently in view in the Stateflow Editor from
which you select the report.

To generate a model report on chart objects, follow these steps:
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1 Open the chart or subchart for which you want a report.

2 In the Stateflow Editor, select File > Print Details.

The Print Details dialog box appears as follows:

3 Enter the destination directory of the report file and select options to
specify what objects appear in the report.

For detail s on setting the fields in the File locations/naming options
section of this dialog, see “Generating a Model Report” in the Simulink
software documentation. For details on the report you receive from the
option yo u choose in the System reporting options section, see “System
Report Op tions” on page 6-57 and “Report Format” on page 6-57.

4 Click Print.

The Print Details dialog box appears a nd tracks the activity of the report
generator during report generation. See “Generating a Model Report” in the
Simulink software documentatio n for more details on this window.

If no serious errors occur, the HTML rep ort appears in your default browser.
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Note You can also use MATLAB ® Report Generator™ software to generate
a report that documents an entire model, including both Simulink and
Stateflow objects. See the MATLAB Report Generator User’s Guide.

System Report Options
Reports for the current Stateflow cha rt vary with your choice of one of the
System reporting options fields:

• Current — Reports on the chart or subchart in the current Stateflow
Editor and its immediate parent Simulink system.

• Current and above — This option is grayed out and unavailable for
printing chart details in the Stateflow Editor.

• Current and below — Reports on the chart or subchart in the current
Stateflow Editor and all contents at l ower levels of the hierarchy, along
with the immediate Simulink system.

• Entire model — Reports on the entire model including all charts and
all Simulink systems.

If you select this option, you can modify the report as follows:

- Look under mask dialog – Includes the contents of masked
subsystems in the report.

- Expand unique library links – Includes the contents of library blocks
that are subsystems in the report.

The report includes a library subsystem only once even if it occurs in
more than one place in the model.

Report Format
The general top-down format of the Print Details report is as follows:

• The report shows the title of the system in the Simulink model containing
the chart or subchart in current view in the Stateflow Editor.
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• A representation of Simulink hierarchy for the containing system and its
subsystems follows. Each subsystem i n the hierarchy links to the report of
its Stateflow charts.

• The report section for the Stateflow charts of each system or subsystem
begins with a small report on the syste m or subsystem, followed by a report
of each contained chart.

• Each chart report includes a reproduction of its chart with links for
subcharted states that have reports of their own.

• An appendix tabulates the covered Sta teflow and Simulink objects in the
report.

Printing the Current Chart
The Print Current View option prints an individual chart or subchart as
follows:

1 Open the chart or subchart that you want to print.

2 In the Stateflow Editor, select File > Print Current View.

3 In the submenu, choose one of these options:

• To File — Converts the current view to a graphics file.

Select the format for the graphics f ile from a submenu of graphical file
types.

• To Clipboard — Copies the current view to the system clipboard.

Select the format for the clipboard copy from a submenu of graphical
formats.

• To Figure — Converts the current view to a MATLAB ® figure window.

• To Printer — Prints the current view on the current printer.

You can also print the current view from the MATLAB command line using
the sfprint function.
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Defining Data

Adding Data (p. 7-3) Learn how to define the data that
a chart stores internally in its own
workspace

Setting Data Properties in the Data
Dialog (p. 7-7)

Explains the fields of the Data dialog
for setting the properties of a data

Sharing Data with Simulink ® Models
and the MATLAB ® Workspace
(p. 7-28)

Describes how you can share data
with Simulink ® models and the
MATLAB ® workspace

Sharing Global Data with Simulink ®

Models (p. 7-33)
Learn how to access Simulink data
store memory from a Stateflow ®

chart

Sharing Data Between Charts and
with External Modules (p. 7-39)

Learn how to share data between
Stateflow charts and with external
modules

Typing Stateflow ® Data (p. 7-43) Learn how to specify the type of your
Stateflow data

Sizing Stateflow ® Data (p. 7-51) Learn different ways to specify the
size of your Stateflow data as a
vector or matrix

Defining Temporary Data (p. 7-54) Describes how you can define
temporary data in graphical, truth
table, and Embedded MATLAB™
functions

Resolving Data Properties from
Simulink ® Signal Objects (p. 7-56)

Describes how Stateflow charts can
inherit properties from Simulink
signals



7 Defining Data

Best Practices for Using Data in
Stateflow ® Charts (p. 7-61)

Provides best practices for using
data in Stateflow charts

Transferring Data Across Models
(p. 7-63)

Explains how to copy and move
Stateflow data from one Simulink
model to another
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Adding Data

In this section...

“When to Add Data” on page 7-3

“Where You Can Use Data” on page 7-3

“Adding Data Using the Stateflow ® Editor” on page 7-3

“Adding Data Using the Model Explorer” on page 7-4

When to Add Data
Add data when you want to define data that is visible to a specific level of the
Stateflow ® hierarchy.

Where You Can Use Data
You can store and retrieve data that resides internally in the Stateflow
workspace, and externally in the Simulink ® model or application that embeds
the Stateflow chart. Stateflow actions can reference internal and external
data.

Adding Data Using the Stateflow ® Editor

How to Add Data
To add data using the Stateflow Editor, follow these steps:

1 In the Stateflow Editor, select Add > Data.

2 In the pop-up menu, select a scope for the new data object.

See “Scope” on page 7-10 for a description of each type of scope.

Selecting scope adds a default definition of the new data object to the
Stateflow hierarchy and displays the Data properties dialog.

3 Specify properties for the new data ob ject in the Data properties dialog, as
described in “Setting Data Properti es in the Data Dialog” on page 7-7.
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Visibility of Data You Add in the Stateflow ® Editor
If you add data in the Stateflow Editor , that data is visible to all objects in
the chart.

Adding Data Using the Model Explorer

How to Add Data
To add data using the Model Explorer, follow these steps:

1 In the Stateflow Editor, select Tools > Explore.

The Model Explorer opens. If no object is selected, the current chart or
subchart appears highlighted in the Model Hierarchy pane. Otherwise,
the selected object appears highlighted.

2 In the Model Hierarchy pane, select the object in the Stateflow hierarchy
where you want the new data to be visible.

The object you select becomes the parent of the data object.

3 In the Model Explorer, select Add > Data, or click the Add Data button:

This action adds a default definition for the data in the hierarchy, and the
data definition appears in a new row in the Model Explorer Contents pane.

7-4



Adding Data

4 Change the properties of the data, as d escribed in “Setting Data Properties
in the Data Dialog” on page 7-7.

Visibili ty of Data You Add in the Model Explorer
In the Model Explorer, you can add data that is visible at these levels in the
Stateflow hierarchy:

• Stateflow machine

• Stateflow chart

• Box

• State

• Subchart

• Substate

• Function

Stateflow charts can contain graphical, truth table, and Embedded
MATLAB™ functions.
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Stateflow objects that can parent data in the model hierarchy appear in this
diagram.
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Setting Data Properties in the Data Dialog

In this section...

“What Is the Data Properties Dialog?” on page 7-7

“When to Use the Data Properties Dialog” on page 7-8

“Opening the Data Properties Dialog” on page 7-9

“Properties You Can Set in the General Pane” on page 7-9

“Properties You Can Set in the Value Attributes Pane” on page 7-21

“Properties You Can Set in the Description Pane” on page 7-24

“Entering Expressions and Parameter s for Data Properties” on page 7-25

What Is the Data Properties Dialog?
The Data properties dialog allows you to set and modify the properties of
data objects. Properties vary accord ing to the scope and type of the data
object. The Data properties dialog disp lays only the property fields relevant
to the data object you are defining. For example, the dialog displays these
properties and default values for a data object whose scope is Constant and
type is Fixed point .

7-7



7 Defining Data

For many data properties, you can enter expressions or parameter values.
Using parameters to set properties for many data objects simplifies
maintenance of your model, because you can update multiple properties by
changing a single parameter.

When to Use the Data Properties Dialog

• Use the General pane to define the name, scope, size, complexity, or type of
a data object. See “Properties You Can Set in the General Pane” on page 7-9.

• Use the Value Attributes pane to set an initial value, limit range, and
index into a data object array. See “Properties You Can Set in the Value
Attributes Pane” on page 7-21.
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• Use the Description pane to enter a data description and link to
documentation about the data object. See “Properties You Can Set in the
Description Pane” on page 7-24.

Opening the Data Properties Dialog
To open the Data properties dialog, use one of these methods:

• Add a new data object in the Stateflow ® Editor, as described in “Adding
Data Using the Stateflow ® Editor” on page 7-3.

After you add the data object, the Data properties dialog appears.

• Open the Data properties dialog from t he Model Explorer for a data object
that already exists in the Stateflow hierarchy. Use one of these techniques:

- Double-click the data object in the Contents pane.

- Right-click the data object in the Contents pane and select Properties.

- Select the data object in the Contents pane and then select View >
Dialog View.

The Data properties dialog opens inside the Model Explorer.

For more information about adding data objects in the Model Explorer, see
“Adding Data Using the Model Explorer” on page 7-4.

Properties You Can Set in the General Pane
The General pane of the Data properties dialog appears as shown.
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You can set these properties in the General pane.

Name
Name of th e data object. Name length sh ould comply with the maximum
identif ier length enforced by Real-Time Workshop ® code generation software.
You can set this parameter in the Symbols pane of the Configuration
Paramet ers dialog (see “Maximum identifier length” in the Real-Time
Worksho p Reference documentation). The default length is 31 characters and
the max imum length you can specify is 256 characters. The name can consist
of any combination of alphanumeric and special characters; however, it cannot
begin w ith a numeric character or contain embedded spaces.

Scope
Locati on where data resides in memory, relative to its parent. You can set
scope to one of these values:
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Scope Value Description

Local Data defined in the current Stateflow chart only.

Constant Read-only constant value that is visible to the parent
Stateflow object and its children.

Parameter Constant whose value is defined in the MATLAB ®

workspace, or derived from a Simulink ® block
parameter that you define and initialize in the parent
masked subsystem. The Sta teflow data object must
have the same name as the parameter.

See “Mask Editor” in Simulink software
documentation for information on how to assign a
parameter to a masked subsystem.

See “Sharing Simulink ® Parameters with Stateflow ®

Charts” on page 7-30 to learn how to use Simulink
block parameters with Stateflow charts.

Input Input argument to a function if the parent is a
graphical, truth table, or Embedded MATLAB™
function. Otherwise, the Simulink model provides the
data to the Stateflow chart via an input port on the
Stateflow block. See “Sharing Input and Output Data
with Simulink ® Models” on page 7-28.

Output Return value of a function if the parent is a graphical,
truth table, or Embedded MATLAB function.
Otherwise, the Stateflow chart provides the data
to the Simulink model via an output port on the
Stateflow block. See “Sharing Input and Output Data
with Simulink ® Models” on page 7-28.

Data Store Memory Data object that binds to a Simulink data store, which
is a signal that functions like a global variable because
all blocks in a model can access that signal. This
binding allows the Stateflow chart to read and write
the Simulink data store, thereby sharing global data
with the model. The Stateflow object must have the
same name as the Simulink data store. See “Sharing
Global Data with Simulink ® Models” on page 7-33.
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Scope Value Description

Temporary Data that persists only during the execution of a
function. You can define temporary data only for
a graphical, truth table, or Embedded MATLAB
function, as described in “Defining Temporary Data”
on page 7-54.

Exported Data from the Simulin k model that is made available
to external code defined in t he Stateflow hierarchy, as
described in “Sharing Stateflow ® Data with External
Modules” on page 7-40. You can define exported data
only for a Stateflow machine.

Imported Data parented by the S imulink model that is defined
by external code embedded in the Stateflow machine,
as described in “Sharing Stateflow ® Data with
External Modules” on page 7-40. You can define
imported data only for a Stateflow machine.

Port
Index of the port associated with the data object. This property applies only to
input and output data. See “Sharing Input and Output Data with Simulink ®

Models” on page 7-28.

Data must resolve to Simulink ® signal object
Option that specifies that output or local data explicitly inherits properties
from Simulink.Signal objects of the same name in the MATLAB base
workspace or the Simulink model workspace. The data can inherit these
properties:

• Size

• Complexity

• Type

• Minimum value

• Maximum value

• Initial value
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• Storage class (in Real-Time Workshop generated code)

• Sampling mode (for Truth Table block output data)

For more information, see “Resolving Data Properties from Simulink ® Signal
Objects” on page 7-56.

Size
Size of the data object. The size can be a scalar value or a MATLAB vector
of values. To specify a scalar, set the Size property to 1 or leave it blank. To
specify a MATLAB vector, use a multidimensional array, where the number
of dimensions equals the length of the vector and the size of each dimension
corresponds to the value of each vector element.

The scope of the data object determines what sizes you can specify. Stateflow
data store memory inherits all of its properties — including size — from the
Simulink data store to which it is bound. For all other scopes, size can be
scalar, vector, or a matrix of n-dimensions.

For more information, see “Sizing Stateflow ® Data” on page 7-51.

Complexity
Option that specifies whether or not the data object accepts complex values.
You can choose one of these settings:

Complexity
Setting

Description

Off Data object does not accept complex values.

On Data object accepts complex values.

Inherited Data object inherit s the complexity setting from a
Simulink block.

For more information, see “How Complex Data Works in Stateflow ® Charts”
on page 12-2.
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Type
Type of data object. You can specify the data type by:

• Selecting a built-in type from the Type drop-down list.

• Using the Data Type Assistant to specify a data Mode and then specifying
the data type based on that mode.

Note Click the Show data type assistant button to display
the Data Type Assistant.

• Entering an expression in the Type field that evaluates to a data type.

Note If you enter an expression for a fixed-point data type, you must
specify scaling explicitly. For example, you cannot enter an incomplete
specification such as fixdt(1,16) in the Type field. If you do not specify
scaling explicitly, an error messa ge appears when you try to simulate
your model.

To ensure that a data type definition is valid for fixed-point data, use one of
the two options above.

For more information, s ee “Typing Stateflow ® Data” on page 7-43.

Fixed-Point D ata Properties
Properties that apply only to fixed-poi nt data. For a detailed discussion about
fixed-point data, see “Fixed-Point Concepts” in the Simulink® Fixed Point™
User’s Guide.
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When the Data Type Assistant Mode is Fixed point, the Data Type
Assistant displays fields for specifying additional information about your
fixed-point data.
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If the Scaling is Slope and bias rather than Binary point , the Data Type
Assistant displays a Slope field and a Bias field rather than a Fraction
length field.

You can use the Data Type Assistant to set these fixed-point properties:

Sign. Specify whether you want the fixed-point data to be Signed or
Unsigned . Signed data can represent positive and negative values, but
unsigned data represents positive values only. The default setting is Signed .

Word length. Specify the bit size of the word that will hold the quantized
integer. Large word sizes represent large values with greater precision than
small word sizes. Word length can be any integer between 0 and 32. The
default bit size is 16.

Scaling. Specify the method for scaling your fixed-point data to avoid
overflow conditions and minimize quant ization errors. The default method is
Binary point scaling. You can select one of two scaling modes:
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Scaling
Mode

Description

Binary
point

If you select this mode, the Data Type Assistant displays
the Fraction Length field, which specifies the binary point
location.

Binary points can be positive or negative integers. A positive
integer moves the binary point left of the rightmost bit by
that amount. For example, an en try of 2 sets the binary point
in front of the second bit from the right. A negative integer
moves the binary point further right of the rightmost bit by
that amount, as in this example:

The default binary point is 0.

Slope
and bias

If you select this mode, the Data Type Assistant displays fields
for entering the Slope and Bias.

Slope can be any positive real number, and the default slope
is 1.0. Bias can be any real number, and the default bias is
0.0. You can enter slope and bias as expressions that contain
parameters you define in the MATLAB workspace.

Note Use binary-point scaling when ever possible to simplify the
implementation of fixed-point data in generated code. Operations with
fixed-point data using binary-point scaling are performed with simple bit
shifts and eliminate expe nsive code implementatio ns required for separate
slope and bias values.

For more information about fixed-p oint scaling, see “Scaling” in the Simulink
Fixed Point User’s Guide.

7-17



7 Defining Data

Calculate Best-Precision Scaling. Click this button to calculate
“best-precision” values for both Binary point and Slope and bias scaling,
based on the Limit range properties you specify in the Value Attributes
pane of the Data properties dialog.

To automatically calculate best precision scaling values:

1 In the Data properties dialog, select the Value Attributes tab.

2 Specify Limit range properties.

3 Select the General tab.

4 Select the option Calculate Best-Precision Scaling.

Simulink software calculates the scaling values and displays them in the
Fraction Length field or the Slope and Bias fields. For more information,
see “Constant Scaling for Best Precision” in the Simulink Fixed Point User’s
Guide.

Note The Limit range properties do not apply to Constant and Parameter
scopes. For Constant , Simulink software calculates the scaling values based
on the Initial value setting. The software cannot calculate best-precision
scaling for the Parameter scope.

Lock output scaling against changes by the autoscaling tool. Check
this box to prevent a Simulink model fr om replacing the current fixed-point
type with a type that the autoscaling t ool chooses. See “Automatic Scaling”
in the Simulink Fixed Point User’s Guide for instructions on autoscaling
fixed-point data.

Showing Fixed-Point Details. When you specify a fixed-point data type,
you can use the Fixed-point details subpane to see information about the
fixed-point data type that is currently defined in the Data Type Assistant. To
see the subpane, click the expander next to Fixed-point details in the Data
Type Assistant. The Fixed-point details subpane appears at the bottom
of the Data Type Assistant.
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The rows labeled Minimum and Maximum show the same values that appear in
the corresponding Minimum and Maximum fields in the Value Attributes
pane of the Data properties dialog. See “Checking Signal Ranges” and
“Checking Parameter Valu es” for more information.

The rows labeled Representable minimum , Representable maximum , and
Precision show the minimum value, maximum value, and precision that
can be represented by the fixed-point data type currently displayed in the
Data Type Assistant. See “Fi xed-Point Concepts” in the Simulink Fixed Point
User’s Guide for information about these three quantities.

The values displayed by the Fixed-point details subpane do not
automatically update if you click Calculate Best-Precision Scaling, or
change the range limits, the values th at define the fixed-point data type,
or anything elsewhere in the model. To update the values shown in the
Fixed-point details subpane, click Refresh Details. The Data Type
Assistant then updates or recalculate s all values and displays the results.

Clicking Refresh Details does not change anything in the model; it changes
only the display. Click OK or Apply to put the displayed values into effect. If
the value of a field cannot be known without first compiling the model, the
Fixed-point details subpane shows the value as Unknown. If any errors
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occur when you click Refresh Details, the Fixed-point details subpane
shows an error flag on the left of the applicable row, and a description of the
error on the right. . For example, the next figure shows two errors.

The row labeled Minimum shows the error Cannot evaluate because
evaluating the expression MySymbol , specified in the Minimum field of
the Value Attributes pane, did not return an appropriate numeric value.
When an expression does not evaluate successfully, the Fixed-point details
subpane displays the unevaluated expression (truncating to 10 characters if
necessary to save space) in place of the unavailable value.

To correct this error, you would need to define MySymbol in an accessible
workspace to provide an appropriat e numeric value. After you clicked Refresh
Details, the value of MySymbol would appear in place of its unevaluated text,
and the error indicator and erro r description would disappear.

To correct the overflow error shown for Maximum, you would need to decrease
the value in the Maximum field of the Value Attributes pane, increase
Word length, or decrease Fraction length (or perform a combination of
these changes) sufficiently to allow th e fixed-point data type to represent the
maximum value that it could have.
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Properties You C an Set in the Value Attributes Pane
The Value Attributes pane of the Data properties dialog appears as shown.

You can set these properties in the Value Attributes pane.

Initial value
Initial value of the data object. If you do not specify a value, the default is 0.0.
The options for initializing values depend on the scope of the data object, as
follows:

Scope What to Specify for Initial Value

Local Expression or paramete r defined in the Stateflow
hierarchy, MATLAB workspace, or Simulink masked
subsystem
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Scope What to Specify for Initial Value

Constant Constant value or expression. The expression is
evaluated when you update the chart, and the resulting
value is used as a constant for running the Stateflow
chart.

Parameter You cannot enter a value. The chart inherits the initial
value from the parameter.

Input You cannot enter a value. The chart inherits the initial
value from the Simulink input signal on the designated
port.

Output Expression or parame ter defined in the Stateflow
hierarchy, MATLAB workspace, or Simulink masked
subsystem

Data Store
Memory

You cannot enter a value. The chart inherits the initial
value from the Simulink data store to which it is bound.

For more information, see “Initializing Data from the MATLAB ® Base
Workspace” on page 7-30 and “Sharing Simulink ® Parameters with Stateflow ®

Charts” on page 7-30.

Save final value to base workspace
Option that assigns the value of the data item to a variable of the same
name in the model workspace at the end of simulation (see “Using Model
Workspaces” in the Simulink software documentation).

Limit range properties
Range of acceptable values for this data object. Stateflow software uses this
range to validate the data object during simulation. To establish the range,
specify these properties:

• Maximum — The largest value allowed for the data item during
simulation. You can enter an expression or parameter that evaluates to a
numeric scalar value.
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• Minimum — The smallest value allowed for the data item during
simulation. You can enter an expression or parameter that evaluates to a
numeric scalar value.

The largest value you can set for Maximum is inf , and the smallest value
you can set for Minimum is -inf .

Note A Simulink model uses the Limit range properties to calculate
best-precision scaling for fixed-poin t data types. You must specify a maximum
or minimum value before you can select the Calculate Best-Precision
Scaling option in the General pane. For more information, see “Scaling”
on page 7-16.

For more information on entering values for Limit range properties, see
“Entering Expressions and Parameters for Data Properties” on page 7-25.

First index
Index of the first element of the d ata array. The default value is 0.

Units
Units of measurement that you want t o associate with the data object. The
string in this field resides with the data object in the Stateflow hierarchy.

Test point
Option that designates the data object as a test point. Enabling this option
guarantees that you can observe the data object during simulation (see
“Working with Test Points” in Simulink software documentation). Data
objects can be test points if:

• Scope is Local

• Parent is not a Stateflow machine

• Data type is not ml
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Watch in Stateflow ® Debugger
Option that enables you to watch the data values in the Stateflow Debugger
(see “Watching Data in the Stateflow ® Debugger” on page 19-32).

Properties You Can Set in the Description Pane
The Description pane of the Data properties dialog appears as shown.

You can set these properties in the Description pane.

Description
Description of the data object.

Document link
Link to online documentation for the data object. You can enter a Web URL
address or a MATLAB command that displays documentation in a suitable
online format, such as an HTML file or text in the MATLAB Command
Window. When you click the Document link hyperlink at the bottom of
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the properties dialog, Stateflow software evaluates the link and displays the
documentation.

Entering Expressions and Parameters for Data
Properties
You can enter expressions as values for these properties in the Data properties
dialog:

• “Size” on page 7-13

• “Type” on page 7-14

• “Initial value” on page 7-21

• Minimum and Maximum (see “Limit range properties” on page 7-22)

• “Fixed-Point Data Properties” on page 7-14

Expressions can contain a mix of parameters, constants, arithmetic operators,
and calls to MATLAB functions.

Default Data Property Values

When you leave an expression or parameter field blank, Stateflow software
assumes a default value, as follows:

Field Default

Initial value 0.0

Maximum inf

Minimum –inf

Word length 16

Slope 1.0

Bias 0.0

Binary point 0
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Field Default

First index 0

Size • −1 (inherited), for inputs, parameters, and Embedded
MATLAB function outputs

• scalar , for all other data objects

Using Parameters in Expressions
You can include parameters in expressions. A parameter is a constant that
you can:

• Define in the MATLAB workspace (see “Initializing Data from the
MATLAB ® Base Workspace” on page 7-30)

• Derive from a Simulink block parameter that you define and initialize in
the parent masked subsystem (see “Sharing Simulink ® Parameters with
Stateflow ® Charts” on page 7-30)

You can mix both types of parameters in an expression.

Using Constants in Expressions
You can use two types of constants in expressions in the Data properties
dialog:

• Numeric constants of the a ppropriate type and size

• Stateflow constants

Stateflow constants are read-only da ta objects that you add to your chart
with the scope Constant (see “Adding Data” on page 7-3). Stateflow
constants retain their initial values, which you set in the Data properties
dialog (see “Initial value” on page 7-21).

Using Arithmetic Operators in Expressions
You can use these arithmetic operators i n expressions in th e Data properties
dialog:

• +
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• –

• *

• /

Calling Functions in Expressions
In fields that accept expressions, you c an call functions that return property
values of other variables defined in the Stateflow hierarchy, MATLAB
workspace, or Simulink masked subsystem. For example, these functions can
return appropriate values for specified fields in the Data properties dialog:

Function Returns For Field

MATLAB
function size

Size of input array Size

Stateflow
function type

Type of input data Data type

MATLAB
function min

Smallest element or
elements of input array

Minimum

MATLAB
function max

Largest element or
elements of input array

Maximum

Simulink
function fixdt

Simulink.NumericType
object that describes
a fixed-point or
floating-point data type

Data type
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Sharing Data with Simulink ® Models and the MATLAB ®

Workspace

In this section...

“Sharing Input and Output Data with Simulink ® Models” on page 7-28

“Sharing Simulink ® Parameters with Stateflow ® Charts” on page 7-30

“Initializing Data from the MATLAB ® Base Workspace” on page 7-30

“Saving Data to the MATLAB ® Workspace” on page 7-32

Sharing Input a nd Output Data with Simulink ®

Models
Data flows bet ween Simulink ® models and Stateflow ® charts via input ports
and output por ts on the Stateflow chart block. The following example shows
a Stateflow c hart block with input and output data ports connected to the
Simulink mod el.
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To add input or output data to a State flow chart, follow these steps:

1 Add a data object to the Stateflow chart, as described in “Adding Data
Using the Stateflow ® Editor” on page 7-3.

Note You must add the data to the Stateflow chart, not to any other object
in the chart.

2 Open the Data properties dialog, as described in “Opening the Data
Properties Dialog” on page 7-9.

3 Set the Scope property to one of these values:

• Input

This setting is the same as Input from Simulink in the Add > Data
menu in the Stateflow Editor. A Simulink input port appears on the
Stateflow chart block in the model.

• Output

This setting is the same as Output to Simulink in the Add > Data
menu in the Stateflow Editor. A Simulink output port appears on the
Stateflow chart block in the model.

You assign inputs and outputs to ports in the order in which you add the
data. For example, you assign the first input to input port 1 and the third
output to output port 3. You can change port assignments by editing the
value in the Port field of the Data properties dialog.

4 Set the type of the input or output data, as described in “Typing Stateflow ®

Data” on page 7-43.

5 Decide if you want to use strong data typing with the Simulink model, as
described in “Strong Data Typing with Simulink ® I/O” on page 7-50.

6 Set the size of the input or output data, as described in “Sizing Stateflow ®

Data” on page 7-51.
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Note You cannot type or size Stateflow input data to accept frame-based
data from a Simulink model.

Sharing Simulink ® Parameters with Stateflow ® Charts

When to Share Simulink ® Parameters
Share Simulink parameters with State flow charts to maintain consistency
with your Simulink model.

How to Share Simulink ® Parameters
To share Simulink parameters for a masked subsystem with a Stateflow
chart, follow these steps:

1 In the Simulink mask editor for the parent subsystem, define and initialize
a Simulink parameter (see “Mask Editor” in the Simulink software
documentation).

2 In the Stateflow hierarchy, define a d ata object with the same name as the
parameter (see “Adding Data” on page 7-3).

3 Set the scope of the data object to Parameter.

A Stateflow chart defines data of scope Parameter as a constant. You
cannot change a parameter value during model execution.

When simulation starts, Simulink softw are attempts to resolve the Stateflow
data object to a parameter at the lowest level masked subsystem. If
unsuccessful, Simulink software move s up the model hierarchy to resolve the
data object to a parameter at higher level masked subsystems.

Initializing Data from the MATLAB ® Base Workspace
You can initialize data from the MATLAB ® base workspace. Initialization
requires that you define data in both the MATLAB base workspace and the
Stateflow hierarchy as follows:

1 Define and initialize a variable in the MATLAB workspace.
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2 In the Stateflow hierarchy, define a d ata object with the same name as the
MATLAB variable (see “Adding Data” on page 7-3).

3 Set the scope of the Stateflow data object to Parameter.

When simulation starts, data resolution occurs. During this process, the
Stateflow data object gets its initia l value from the associated MATLAB
variable. For example, if the variable is an array, each element of the
Stateflow array initializes to the sam e value as the corresponding element
of the MATLAB array.

One-dimensional Stateflow arrays are compatible with MATLAB row and
column vectors of the same size. For example, a Stateflow vector of size 5
is compatible with a MATLAB row vector of size [1,5] or column vector of
size [5,1] .

Time of Initialization
Data parent and scope control initialization time for Stateflow data objects.

Data Parent Scope When Initialized

Local,
Exported

Start of simulationMachine

Imported Not applicable

Input Not applicableChart

Output,
Local

Start of simulation or when
chart reinitializes as part
of an enabled Simulink
subsystem

State with History Junction Local Start of simulation or when
chart reinitializes as part
of an enabled Simulink
subsystem

State without History Juncti on Local State activation
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Data Parent Scope When Initialized

Input,
Output

Function-call invocationFunction (graphical, truth
table, and Embedded
MATLAB™ functions) Local Start of simulation or when

chart reinitializes as part
of an enabled Simulink
subsystem

Saving Data to the MATLAB ® Workspace
For all scopes except Constant and Parameter, you can instruct the
Stateflow chart to save the final value of a data object at the end of simulation
in the MATLAB base workspace (not as a masked subsystem parameter).

Use one of these techniques:

• In the Value Attributes pane of the Data properties dialog, select the
check box Save final value to base workspace.

• In the Contents pane of the Model Explorer, follow these steps:

a Select the row of the data object.

b Select the check box in the SaveToWorkspace column.
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Sharing Global Data with Simulink ® Models

In this section...

“About Data Stores” on page 7-33

“How Stateflow ® Charts Work with Local and Global Data Stores” on page
7-33

“Accessing Data Store Memory from a Stateflow ® Chart” on page 7-34

“Diagnostics for Sharing Data Between Stateflow ® Charts and Simulink ®

Blocks” on page 7-37

About Data Stores
You can use an interface to direct Stateflow ® charts to access global variables
in Simulink ® models. A Simulink model implements global variables as
data stores, created either as data store memory blocks or as instances of
Simulink.Signal objects. Data stores enable multiple Simulink blocks to
share data without the need for explicit I/O connections to pass data from one
block to another. Stateflow charts sh are global data with Simulink models by
reading from and writing to data store memory symbolically using Stateflow
action language.

How Stateflow ® Charts Work with Local and Global
Data Stores
Stateflow charts can interface with loc al and global data stores. Local data
stores, often implemented as data store memory blocks, are visible to all
blocks in one model. To interact with local data stores, a Stateflow chart must
reside in the model where you define the local data store, as shown below.
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Global data stores have a broader scope, which crosses model reference
boundaries. To interact with global data stores, a Stateflow chart must reside
either in the top model — where the global data store is defined — or in
any model that the top model references. You implement global data stores
as Simulink signal objects.

Accessing Data Store Memory from a Stateflow ®

Chart
To access global data in a Simulink mod el from a Stateflow chart, you must
bind a Stateflow data object to a Simulink data store — either a data store
memory block or a signal object (see “Binding a Stateflow ® Data Object
to Data Store Memory” on page 7-34). After you create the binding, the
Stateflow data object becomes a symbolic representation of Simulink data
store memory. You can then use this symbolic object to store and retrieve
global data using Statefl ow action language (see “Reading and Writing Global
Data Programmatically” on page 7-36).

Binding a Stateflow ® Data Object to Data Store Memory
To bind a Stateflow data object to Si mulink data store memory, you must
create a data object in the Stateflow hierarchy with the same name as the
data store and with scope set to Data Store Memory . The Stateflow data
object inherits all propert ies from the data store to which you bind the object.
Follow guidelines for specifying data s tore properties in “Tips for Using Data
Stores in Stateflow ® Charts” on page 7-61.
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This properties dialog shows a Stateflow data object that you bind to a data
store.

Note You cannot edit properties that the data object inherits from the data
store.

Using the Stateflow ® Editor to Bind a Data Object
In the Stateflow Editor , follow these steps:

1 Select Add > Data > Data Store Memory.

The properties dialog for the new data object appears with scope property
set to Data Store Memory.

2 In the Name field of the Data properties dialog, enter the name of the
Simulink data store to which you want to bind.
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3 Click OK.

Using the Model Explorer to Bind a Data Object
To use the Model Explorer, follow these steps:

1 In the Stateflow Editor, select Tools > Explore.

The Model Explorer appears.

2 In the Model Explorer, select Add > Data.

The Model Explorer adds a data object to the Stateflow chart.

3 Double-click the new data object to open its properties dialog, and enter
the following information in the General pane:

Field What to Specify

Name Enter the name of the Simulink data store memory block to
which you want to bind.

Scope Select Data Store Memory from the drop-down menu.

4 Click OK.

Resolving Data Store Bindings
Multiple local and global data stores with the same name can exist in the
same model hierarchy. In this situation, the Stateflow data object binds to the
data store that is the nearest ancestor.

Reading and Writing Global Data Programmatically
You can use the Stateflow data object that you bind to Simulink data store
memory to store and retrieve global data in states and transitions using
Stateflow action language. Think of this object as a global variable that you
reference by its symbolic name — the same name as the data store to which
you bind the object. When you store numeric values in this variable, you are
writing to Simulink data store memory. Similarly, when you retrieve numeric
values from this variable, you are reading from the data store memory.
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This example of Stateflow action language reads from and writes to a data
store memory block called myglobal .

Diagnos tics for Sharing Data Between Stateflow ®

Charts a nd Simulink ® Blocks

Errors to Check For
Multipl e reads and writes can occur unintentionally in the same time step.
To detect these situations, you can configure data store memory blocks to
generate errors or warnings for these conditions:

• Read before write

• Write a fter write

• Write a fter read
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Note These diagnostics are available only for data store memory blocks used
within a single Simulink model, not for data stores created from Simulink
signal objects. In other words, these diagnostics do not work for global data
stores that cross model reference boundaries.

When to Enable Diagnostics
Enable diagnostics on data store memory blocks to ensure the validity of data
that multiple unconnected blocks share while running at different rates. In
this scenario, you can detect conditions when writes do not occur before reads
in the same time step. To prevent these violations, see “Tips for Using Data
Stores in Stateflow ® Charts” on page 7-61.

When to Disable Diagnostics
If you use a data store memory block as a persistent global storage area for
accumulating values across time steps, di sable diagnostics to avoid generating
unnecessary warnings.

How to Set Diagnostics for Shared Data
To set diagnostics on data store memory blocks, follow these steps:

1 Double-click the data store memory block in your Simulink model to open
its Block Parameters dialog.

2 Click the Diagnostics tab.

3 Enable diagnostics by selecting warning or error from the drop-down
menu for each condition you want to detect.

4 Click OK.
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Sharing Data Between Charts and with External Modules

In this section...

“Sharing Data Between Charts in a Stateflow ® Machine” on page 7-39

“Sharing Stateflow ® Data with External Modules” on page 7-40

Sharing Data Between Charts in a Stateflow ®

Machine
You can share data between Stateflow ® charts in a single Stateflow machine
by:

• Defining local data that are parented by the Stateflow machine

• Defining data store memory objects that are parented by each Stateflow
chart that wants to share the data.

Sharing Local Data Among All Charts in a Stateflow ® Machine
To share local data among all charts in a single Stateflow machine, follow
these steps:

1 Use the Model Explorer to add a data object to the Stateflow machine in
which the charts reside, as described in “Adding Data Using the Model
Explorer” on page 7-4.

2 Set the scope of the data object to Local, as described in “Setting Data
Properties in the Data Dialog” on page 7-7.

The new data object is visible to all charts in the parent Stateflow machine.

Sharing Dat a Store Memory Between Charts in a Stateflow ®

Machine
You can use data store memory objects to share data between selected charts
in a single S tateflow machine. Follow these steps:

7-39



7 Defining Data

1 Use the Model Explorer to add a data object to each Stateflow chart that
wants to share the data, as described in “Adding Data Using the Model
Explorer” on page 7-4.

2 Give each data object the same name.

3 Set the scope of each data object to Data Store Memory.

Each data store memory object you ad d represents a common area of memory
storage and functions as a global variable. You can extend the use of data
store memory objects to share data with Simulink ® models, as described in
“Sharing Global Data with Simulink ® Models” on page 7-33.

Sharing Stateflow ® Data with External Modules
A Stateflow machine can share data with external modules, such as Stateflow
charts in other machines or external code assigned to the machine. Sharing
data requires that a Stateflow machine export the data definition to the
external module and that the external module import the data definition from
the Stateflow machine. Similarly, a S tateflow machine can import data that
an external module exports.

Exporting Data to External Modules

To export data from the Stateflow mach ine to external modules, follow these
steps:

1 In the Model Explorer, add a data object to the Stateflow machine, as
described in “Adding Data Using the Model Explorer” on page 7-4.

2 Set the scope of the data to Exported.

When You Export Data to External Code Assigned to the Stateflow
Machine. For each exported data object, the S tateflow code generator creates
a C declaration of the form

type data;

where type is the C type of the exported data object — such as int16 or
double — and data is the name of the Stateflow object. For example, suppose
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that your Stateflow machine defines an exported int16 item named counter .
The Stateflow code generator exp orts the item as the C declaration

int16_T counter;

where int16_T is a defined type for int16 integers in Stateflow charts.

The code generator includes declarations for exported data in the generated
target’s global header file. This inclusion makes the declarations visible to
external code compiled into or linked to the target.

See “Exported Data” on page 13-31 for an example of Stateflow data exported
to Stateflow external code.

When You Export Data to an External Stateflow Machine. For each
Stateflow machine that wants to share the data exported from the external
machine, you must define a data object of the same name as the exported data
and set the object scope to Imported.

Importing Data from External Modules
To import externally defined data into a Stateflow machine, follow these steps:

1 In the Model Explorer, add a data object to the Stateflow machine, as
described in “Adding Data Using the Model Explorer” on page 7-4.

2 Give the data object the same name as the external data.

3 Set the scope of the data to Imported.

When You Import Data from External Code Assigned to the Stateflow
Machine. For each imported data object, the Stateflow code generator
assumes that external code provides a prototype of the form

type data;

where type is the C data type corresponding to the Stateflow data type of the
imported item — such as int32 or double — and data is the name of the
Stateflow object. For example, suppose that your Stateflow machine defines
an imported int32 integer named counter . The Stateflow code generator
expects the item to be defined in the external C code as
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int32_T counter;

See “Imported Data” on page 13-33 for an example of Stateflow external code
data imported into the Stateflow machine.

When You Import Data from an External Stateflow Machine. Make
sure that the external Stateflow machin e contains a data definition of scope
Exported with the same name as the imported data objects.
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Typing Stateflow ® Data

In this section...

“What Is Data Type?” on page 7-43

“Specifying Data Type and Mode” on page 7-43

“Built-In Data Types” on page 7-47

“Inheriting Data Types from Simulink ® Objects” on page 7-47

“Deriving Data Types from Previously Defined Data” on page 7-48

“Typing Data by Using an Alias” on page 7-49

“Strong Data Typing with Simulink ® I/O” on page 7-50

What Is Data Type?
The term data type refers to the way computers r epresent numbers in memory.
The type determines the amount of storage allocated to data, the method
of encoding a data value as a pattern of binary digits, and the operations
available for manipulating the data.

Specifying Data Type and Mode
To specify the type of a Stateflow ® data object:

1 Open the Data properties dialog, as described in “Opening the Data
Properties Dialog” on page 7-9.

2 Select the Scope of the data object for which you want to set the data type.

For more information, see “Properties You Can Set in the General Pane”
on page 7-9.

3 Click the Show data type assistant button .
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Note If you know the specific data type you want to use, you can enter the
data type directly in the Type field, or select it from the Type drop-down
list, instead of using the Data Type Assistant. For more information, see
“Working with Data Types” in the Simulink ® software documentation.

4 Choose a Mode in the Data Type Assistant section of the dialog.

You can choose from these modes for each scope:

Scope Data Type Modes

Inherit Built in Fixed
point

Expression Bus
Object

Local yes yes yes yes

Constant yes yes yes

Parameter yes yes yes yes

Input yes yes yes yes yes

Output yes yes yes yes yes

Data Store
Memory

yes

5 Based on the mode you select, specify a data type as follows:
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Mode What To Specify

Inherit You cannot specify a value. You inherit the data type from previously defined
data, based on the scope you select for the data object:

• If scope is Input, you inherit the data type from the Simulink input signal
on the designated input port (see “Sharing Input and Output Data with
Simulink ® Models” on page 7-28).

• If scope is Output, you inherit the data type from the Simulink output
signal on the designated output port (see “Sharing Input and Output Data
with Simulink ® Models” on page 7-28).

Note Avoid inheriting data types from output signals. See “Avoid Inheriting
Output Data Properties from Simulink ® Blocks” on page 7-61.

• If scope is Parameter, you inherit the data type from the associated
parameter, which you can define in a Simulink model or the MATLAB ®

workspace (see “Sharing Data with Simulink ® Models and the MATLAB ®

Workspace” on page 7-28).

• If scope is Data Store Memory, you inherit the data type from the
Simulink data store to which you bind the data object (see “Sharing Global
Data with Simulink ® Models” on page 7-33).

Built in Select a data type from the drop-down list of supported data types, as described
in “Built-In Data Types” on page 7-47.

Fixed point Specify the following information about the fixed-point data:

• Whether the data is signed or unsigned

• Word length

• Scaling mode

For information on how to specify thes e fixed-point data properties, see
“Fixed-Point Data Properties” on page 7-14.
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Mode What To Specify

Expression Enter an expression that evaluates to a data type in the Type field. You can
use these expressions:

• Alias type from the MATLAB workspace, as described in “Typing Data by
Using an Alias” on page 7-49

• type operator to specify the type of previously defined data, as described in
“Deriving Data Types from Previously Defined Data” on page 7-48

• fixdt function to create a Simulink.NumericType object that describes a
fixed-point or floating-point data type

For more information on how to build expressions in the Data properties dialog,
see “Entering Expressions and Paramete rs for Data Properties” on page 7-25.

Bus object In the Bus object field, enter the name of a Simulink.Bus object to associate
with the Stateflow bus object structure. You must define the bus object in the
base workspace. If you have not yet defined a bus object, click Edit to create or
edit a bus object in the Bus Types Editor.

Note You can also inherit bus object pr operties from Simulink signals.

For more information about Stateflow bu s object structures, see Chapter 14,
“Working with Structures and Bus Signals in Stateflow ® Charts”.

6 Click Apply to save the data type settings.
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Built-In Data Ty pes
You can choose from these built-in data types:

Data Type Description

double 64-bit double-preci sion floating point

single 32-bit single-precision floating point

int32 32-bit signed integer

int16 16-bit signed integer

int8 8-bit signed integer

uint32 32-bit unsigned integer

uint16 16-bit unsigned integer

uint8 8-bit unsigned integer

boolean Boolean (1 = tru e; 0 = false)

ml Typed internal ly with the MATLAB array
mxArray . The ml data type provides Stateflow
data with the b enefits of the MATLAB
environment, including the ability to assign
the Stateflow data object to a MATLAB
variable or p ass it as an argument to a
MATLAB funct ion. See “ml Data Type” on
page 9-39.

Note ml data cannot have a scope outside the
Stateflow hi erarchy; that is, it cannot have a
scope of Input to Simulink or Output to
Simulink.

Inheriting Data Types from Simulink ® Objects
Stateflow data objects of scope Input, Output, Parameter, and Data Store
Memory can inherit their data types from Simulink objects, as follows:
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Scope: Can inherit type from:

Input Simulink input signal connected to corresponding input
port in Stateflow chart

Output Simulink output signal connected to corresponding
output port in Stateflow chart

Note Avoid inheriting data typ es from output signals.
See “Avoid Inheriting Output Data Properties from
Simulink ® Blocks” on page 7-61.

Parameter Corresponding MATLAB workspace variable or
Simulink parameter in a masked subsystem

Data Store
Memory

Corresponding Simulink data store

To configure these objects to inherit d ata types, create the corresponding
objects in the Simulink model, and then select Inherit: Same as Simulink
from the Type drop-down list in the Data properties dialog. For more
information, see “Specifying Data Type and Mode” on page 7-43.

To determine the data types that the objects inherit, build the Simulink
model and look at the Compiled Type column for each Stateflow data object
in the Model Explorer.

Note Stateflow blocks in libraries can inherit data types. However, multiple
instances of the same library in a model must inherit the same data type.

Deriving Data Types from Previously Defined Data
You can use the type operator to derive data types from previously defined
Stateflow data. In the following example, the Stateflow operator type(x)
specifies the data type of the S tateflow local data object y, where x is a local
data object of type int32 . After you build your model, the Compiled Type
column of the Model Explorer displays the type of each data object in the
compiled simulation application.
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Typing Data by Using an Alias
You can specify the type of Stateflow data by using a Simulink data type alias
(see Simulink.AliasType in the Simulink Reference documentation). After
you build your model, the Compiled Type column of the Model Explorer
displays the type used in the compiled simulation application. In the following
example, you use the alias MyFloat , with BaseType set to single , to type the
Stateflow local data y.
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Strong Data Typing with Simulink ® I/O

By default, inputs to and outputs from Stateflow charts are of type double .
Input signals from Simulink models convert to the type of the corresponding
input data objects in Stateflow charts. Likewise, the data output objects
convert to double before they are exported as output signals to Simulink
models.

To interface directly with signals of data types other than double without
the need for conversion, enable the option Use Strong Data Typing with
Simulink I/O for the Stateflow chart (see “Specifying Chart Properties” on
page 13-6). When you enable this option , the Stateflow chart accepts input
signals of any data type that Simulink models support, provided that the type
of the input signal matches the type of the corresponding Stateflow input data
object. Otherwise, you receive a type mismatch error.

Note For fixed-point data, enable the Use Strong Data Typing with
Simulink I/O option to flag mismatches between input or output fixed-point
data in Stateflow charts and their counterparts in Simulink models.
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Sizing Stateflow ® Data

In this section...

“About Stateflow ® Data Sizes” on page 7-51

“How to Specify Data Size” on page 7-51

“Sizing Data as a Constant Value” on page 7-51

“Sizing Data by Expression” on page 7-52

“Inheriting Input and Output Data Size from Simulink ® Signals” on page
7-52

About Stateflow ® Data Sizes
Stateflow ® data can be a scalar, vector, or N-dimensional matrix, depending
on its scope (see “Size” on page 7-13).

Note Stateflow vectors and matrices u se zero-based indexing, unlike
MATLAB ® vectors and matrices, which use one-based indexing.

How to Specify Data Size
You specify the size of Stateflow data as a scalar value or a MATLAB vector
of values in the Size field of the Data properties dialog, as described in
“Properties You Can Set in the General Pane” on page 7-9.

You can enter size as a constant value o r an expression. Stateflow input and
output data objects can also inherit their sizes from the Simulink ® signals
that connect to them.

Sizing Data as a Constant Value
In the Data properties dialog, you s pecify scalar data by setting the Size
field to 1 or leaving it blank.

You specify MATLAB vectors and matrice s as multidimensional arrays, where
the number of dimensions equals the le ngth of the vector, and the size of each
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dimension corresponds to the value of each element of the vector. Enter the
size of two-dimensional arrays in [row column] format.

One-dimensional Stateflow data arra ys are compatible with Simulink row or
column vectors of the same size. For example, Stateflow input or output data
of size 3 is compatible with a Simulink row vector of size [1,3] , or column
vector of size [3,1] . To define a row vector of size 5, set the Size field to [1
5] . To define a column vector of size 6, set the Size field to [6 1] or just 6.

Sizing Data by Expression
You can use a mathematical expression to set the size of Stateflow data. Size
expressions must evaluate to a positive integer.

In the Size field of the Data properties dialog, you can enter a MATLAB
expression for each dimension. Expressions can contain a mix of numeric
constants, Stateflow constants, arithme tic operators, parameters, and calls to
functions such as size , min , and max. Valid size expressions include:

k+1
size(x)
min(size(y),k)

For more information about expressions, see “Entering Expressions and
Parameters for Data Properties” on page 7-25.

Note You cannot size Stateflow input dat a with an expression that accepts
frame-based data from Simulink models.

Inheriting Input and Output Data Size from Simulink ®

Signals
To configure Stateflow input and output data objects to inherit size from the
corresponding Simulink input and output signals, enter -1 in the Size field of
the Data properties dialog. This default setting applies to input and output
data that you add in the Stateflow Editor (see “Adding Data” on page 7-3).
After you build your model, the Compiled Size column of the Model Explorer
displays the actual size that the compiled simulation application uses.
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Note Stateflow blocks in libraries can inhe rit data sizes. However, multiple
instances of the same library in a model must inherit the same data size.

In the following example, the input data invals connects to a Constant block
that specifies a four-element vector. The Compiled Size column displays the
correct inherited size of 4 for invals .

Inheriting the size of input data is complete for all cases. Chart actions that
store values in the specified output infer the inherited size of output data. If
the expected size in the Simulink model matches the inferred size, inheritance
is successful. Otherwise, a mism atch occurs during build time.

Note Stateflow charts cannot inherit frame-based data sizes from Simulink
models.
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Defining Temporary Data

In this section...

“When to Define Temporary Data” on page 7-54

“How to Define Temporary Data” on page 7-54

When to Define Temporary Data
Define temporary data when you want to use data that persists only while a
function executes. You can define tempo rary data in graphical, truth table,
and Embedded MATLAB™ functions. Fo r example, you can designate a loop
counter to have Temporary scope if the counter value does not need to
persist after the function completes.

How to Define Temporary Data
To define temporary data for a Stateflow ® function, follow these steps:

1 In the Stateflow Editor, select Tools > Explore.

The Model Explorer appears.

2 In the Model Hierarchy pane of the Model Explorer, select the graphical,
truth table, or Embedded MATLAB func tion that will use temporary data.

3 Select Add > Data, or click the Add Data button:
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The Model Explorer adds a default defi nition for the data in the Stateflow
hierarchy, with a scope set to Temporary by default.

4 Change other properties of the data if necessary, as described in “Setting
Data Properties in the Data Dialog” on page 7-7.
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Resolving Data Properties from Simulink ® Signal Objects

In this section...

“About Explicit Signal Resolution” on page 7-56

“Inherited Properties” on page 7-56

“Enabling Explicit Signal Resolution” on page 7-57

“A Simple Example” on page 7-58

About Explicit Signal Resolution
Stateflow ® local and output data in Stateflow charts can explicitly inherit
properties from Simulink.Signal objects in the model workspace or base
workspace. This process is called sig nal resolution and requires that the
resolved signal have the same name as the chart output or local data.

For information about Simulink ® signal resolution, see “Resolving Symbols”
and “Hierarchical Symbol Resolution” in the Simulink documentation.

Inherited Properties
When Stateflow local or output data resolve to Simulink signal objects, they
inherit these properties:

• Size

• Complexity

• Type

• Minimum value

• Maximum value

• Initial value

• Storage class

Storage class controls the appearance of Stateflow chart data in the
generated code. See “Working with D ata Structures” in the Real-Time
Workshop ® User’s Guide.
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Enabling Explic it Signal Resolution
To enable explic it signal resolution, follow these steps:

1 In the model work space or base workspace, define a Simulink.Signal
object with the p roperties you want your Stateflow data to inherit.

For more information about creating Simulink signals, see Simulink.Signal
in the Simulink Reference documentation.

2 Add output or local data to a Stateflow chart.

The Data proper ties dialog box opens.

3 Enter a name for your data that matches the name of the Simulink.Signal
object.

4 In the Data properties dialog box, select the Data must resolve to
Simulink signal object check box, as in this example.
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After you check this box, the dialog box removes or grays out the properties
that your data will inhe rit from the signal.

For a list of properties that your data can inherit during signal resolution,
see “Inherited Properties” on page 7-56.

A Simple Example
This topic presents an example that demonstrates how a Stateflow chart
resolves local and output data to Simulink.Signal objects. To open the
model, click sf_resolve_signal_object, or type sf_resolve_signal_object at
the MATLAB ® command prompt. The model appears as shown.
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In the base workspace, there are three Simulink.Signal objects with these
properties:

The Stateflow chart contains three data objects — two outputs and a local
variable — that will resolve to a signal with the same name, as follows:

When you build the model, each data object inherits the properties of the
ident ically named signal:
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The generated code declares the data b ased on the storage class that the data
inherits from the associated Simulink signal. For example, the header file
below declares the local as an exported global variable:
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Best Practices for Using Data in Stateflow ® Charts

In this section...

“Avoid Inheriting Output Da ta Properties from Simulink ® Blocks” on page
7-61

“Tips for Using Data Stores in Stateflow ® Charts” on page 7-61

Avoid Inheriting Output Data Properties from
Simulink ® Blocks
Stateflow ® output data should not inherit properties from output signals,
because the values back propagate from Simulink ® blocks and can be
unpredictable.

In the Stateflow action language, inherited properties of outputs are
determined solely by external information from Simulink models and not
from the code. By contrast, within the Embedded MATLAB™ language
subset — used in truth tables and Embedded MATLAB functions — inherited
properties of outputs are determined so lely from the code and the properties
of the inputs.

Note Stateflow blocks in libraries can i nherit data properties. However,
multiple instances of the same library in a model must inherit the same
values for those properties.

Tips for Using Data Stores in Stateflow ® Charts

When Binding to Data Stores in Stateflow ® Charts
When you bind a Stateflow data object to a data store, the Stateflow object
inherits all properties from the da ta store. To ensure that properties
propagate correctly when you access data stores, follow these guidelines to
create data stores:

• Specify the signal type as real .
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• Specify a data type other than auto .

• Minimize the use of automa tic-mode properties.

When Enforcing Writes Before Reads in Unconnected Blocks
To enforce writes before reads when unconnected blocks share global data in
Stateflow charts, follow these guidelines:

• Segregate reads into separate blocks from writes.

• Assign priorities to blocks so that yo ur model invokes write blocks before
read blocks.

For instructions on how to set block ex ecution order, see “Controlling and
Displaying the Sorted Order” in the Simulink software documentation.
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Transferring Data Across Models

In this section...

“Copying Data Objects” on page 7-63

“Moving Data Objects” on page 7-63

Copying Data Objects
When you copy a Stateflow ® chart from one Simulink ® model to another, all
data objects in the chart hierarchy are copied except those that the Stateflow
machine parents. However, you can use the Model Explorer to transfer
individual data objects from machine to machine.

To copy a data object, follow these steps:

1 In the Contents pane of the Model Explorer, right–click the data object
you want to copy and select Copy from the context menu.

2 In the Model Hierarchy pane, right-click the destination Stateflow
machine and select Paste from the context menu.

Moving Data Objects
To move a data object, click the object in the Contents pane of the Model
Explorer and drag it to the destination Stateflow machine in the Model
Hierarchy pane.
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Adding Events (p. 8-2) Learn how to define events for
triggering actions in Stateflow ®

charts
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Event Dialog (p. 8-6)

Explains the fields of the Event
dialog for setting the properties of
an event

Sharing Events with Simulink ®

Blocks (p. 8-10)
Shows you how to define the input
and output events for a Stateflow
chart that allow it to communicate
with other Simulink ® blocks

Sharing Events with Stateflow ®

External Code (p. 8-18)
Shows you how to define events that
enable external code to send events
to other charts in the model and
receive events from other charts in
the model

Using Implicit Events (p. 8-21) Describes events that a Stateflow
chart triggers implicitly for actions
such as entry in or exit from a state
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(p. 8-27)
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events from one Simulink model to
another
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Adding Events

In this section...

“What Is an Event?” on page 8-2

“Adding Events Using the Stateflow ® Editor” on page 8-3

“Adding Events Using the Model Explorer” on page 8-3

What Is an Event?
An event is a Stateflow ® object that can trigger acti ons in one of these objects:

• A Simulink ® triggered or function-call subsystem

• A Stateflow chart

When to Add Events
Add events when you want to do one of the following:

• Activate a Simulink triggered or function-call subsystem

• Trigger actions in different states in the same Stateflow chart

Types of Events
An explicit event is an event that you define and can have one of these scopes:

• Local — The Stateflow chart broadcasts the event locally.

• Input from Simulink — Another Simulink block broadcasts the event to
the Stateflow chart.

• Output to Simulink — The Stateflow chart broadcasts the event to
another Simulink block.

An implicit event is a built-in event that broadcasts automatically during
chart execution (see “Using Implicit Events” on page 8-21).

Visibility of Events
The visibility of events in the Stateflow hierarchy is as follows:
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Event Defined In Visible To

Stateflow machine All Stateflow ch arts in the model, along with their
states and substates

Stateflow chart The chart, along with all states and substates

State The state and all substates

Adding Events Using the Stateflow ® Editor
In the Stateflow Editor, you can add events to your Stateflow chart. Follow
these steps:

1 In the Stateflow Editor, select Add > Event.

2 In the resulting submenu, se lect the scope for the event.

The Stateflow Editor adds a default definition of the new event to the
Stateflow hierarchy, and the Event properties dialog box appears.

3 Specify properties for the event in the Event properties dialog box, as
described in “Setting Event Propert ies in the Event Dialog” on page 8-6.

Adding Events Using the Model Explorer
To add events using the Model Ex plorer, follow these steps:

1 In the Stateflow Editor, select Tools > Explore.

The Model Explorer appears.

2 In the Model Explorer, select the obje ct in the Stateflow hierarchy where
you want the new event to be visible.

The object you select becomes the parent of the event.
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Note In the Model Explorer, you can add events at these levels in the
Stateflow hierarchy:

• Stateflow chart

• Subchart

• State

• Substate

• Box

3 Select Add > Event, or click the Add Event button:

The Model Explorer adds a default definition for the new event in the
hierarchy and displays an entry row for the new event in the Contents
pane, as in this example.

4 Change the properties of the event you add in one of these ways:
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• Right-click the event row and select Properties to open the Event
properties dialog.

See “Setting Event Properties in the Event Dialog” on page 8-6 for a
description of each property for an event.

• Click individual cells in the entry ro w to set specific properties such as
Name, Scope, and Port.
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Setting Event Properties in the Event Dialog

In this section...

“Event Properties Dialog” on page 8-6

“Accessing the Event Properties Dialog” on page 8-7

“Property Fields” on page 8-8

Event Properties Dialog
Use the Event properties dialog to set and modify properties of an event,
which can vary according to the scop e of the event. The Event properties
dialog displays only the property field s that are relevant for the event you are
configuring. For example, the dialog di splays these properties and default
values for an event whose scope is Local.
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For input and output events, the dialog displays these properties and defaults.

Accessing the Event Properties Dialog
To access the Event properties di alog, use one of these methods:

• Add a new event from the Stateflow ® Editor.

The Event properties dialog opens on your desktop, as described in “Adding
Events Using the Stateflow ® Editor” on page 8-3.

• Open the Event properties dialog in the Model Explorer using one of these
techniques:

- Double-click the event in the Contents pane.

- Right-click the event in the Contents pane and select Properties.

- Select the event in the Contents pane and then select View > Dialog
View.

The Event properties dialog opens inside the Model Explorer.
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See “Adding Events Using the Model Explorer” on page 8-3.

Property Fields

Name
Name of the event. Actions reference events by their names. Names must
begin with an alphabetic character, cannot include spaces, and cannot be
shared by sibling events.

Scope
Scope of the event. The scope specifies where the event occurs relative to its
parent. You can choose one of these scopes:

Scope Description

Local Event that can occur anywhere in a Stateflow machine,
but is visible only in its parent object (and its parent’s
descendants).

Input from
Simulink

Event that occurs in a Simulink ® block, but is
broadcast in a Stateflow chart. See “Defining Input
Events” on page 8-10.

Output to
Simulink

Event that occurs in a Stateflow chart, but is broadcast
in a Simulink block. See “Defining Output Events”
on page 8-12.

Exported Event that can be broadcast by external code built
into a standalone or code generation target. You can
define exported events only for a Stateflow machine.
See “Exporting Events to Stateflow ® External Code”
on page 8-18.

Imported Externally define d event that can be broadcast
anywhere within the hierarchy of a Stateflow machine.
You can define imported events only for a Stateflow
machine. See “Importing Events from Stateflow ®

External Code” on page 8-19.
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Port
Property that applies to input and output events.

• For input events, port is the index of the input signal that triggers the event.

• For output events, port is the index of the signal that outputs this event.

You assign input and output events to po rts in the order in which you add the
events. For example, you assign the first input event to input port 1 and the
third output event to output port 3.

You can change port assignments in the Model Explorer or the Event
properties dialog. When you change the number of one port, the numbers
of other ports adjust auto matically to preserve t he relative order. See
“Associating Input Events with Control Signals” on page 8-11 and “Associating
an Output Event with an Output Port” on page 8-13.

Trigger
Type of signal that triggers an input o r output event. See “Defining Input
Events” on page 8-10 or “Defining Output Events” on page 8-12.

Debugger Breakpoints
Option for setting debugger breakpoints at the start or end of an event
broadcast.

Description
Description of this event. You can ent er brief descriptions of events in the
hierarchy.

Document Link
Link to online documentation for even ts in a Stateflow chart. To document a
particular event, set the Document Link property to a Web URL address or
MATLAB ® expression that displays document ation in a suitable online format
(for example, an HTML file or text in the MATLAB Command Window). When
you click the blue Document Link text, the chart evaluates the expression.
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Sharing Events with Simulink ® Blocks

In this section...

“Defining Input Events” on page 8-10

“Associating Input Events with Control Signals” on page 8-11

“Defining Output Events” on page 8-12

“Associating an Output Event with an Output Port” on page 8-13

“Accessing Simulink ® Subsystems from Stateflow ® Events” on page 8-14

“Setting Event Triggers” on page 8-16

Defining Input Events

What Is an Input Event?
An input event occurs outside a chart and is visible only in that chart. This
type of event allows other Simulink ® blocks, including other Stateflow ® charts,
to notify a particular chart of events that occur outside it.

How to Define an Input Event
To define an input event, follow these steps:

1 Add an event to the Stateflow chart, as described in “Adding Events” on
page 8-2.

Note You must add an input event to the c hart and not to one of its objects.

2 Set the Scope property for the event to Input from Simulink.

A single trigger port appears at t he top of the Stateflow block.

3 If you want a Si mulink block to trigger the S tateflow chart through this
input event, specify a trigger, as describe d in “Setting Event Triggers”
on page 8-16.

8-10



Sharing Events with Simulink® Blocks

Associating Inp ut Events with Control Signals
When you define o ne or more input events for a chart, a single trigger port
to the chart bloc k appears. External Simulink blocks can trigger the input
events via a sign al or vector of signals connected to the trigger port. The Port
property of an i nput event associates the event with a specific element of a
control signal vector that connects to the trigg er port (see “Port” on page 8-9).

The number of th e port that you assign to the input event acts as an index
into the contro l signal vector. For example, the first element of the signal
vector trigge rs the input event assigned to input port 1, the fourth element
triggers the i nput event assigned to input port 4, and so on. You assign port
numbers in th e order in which you add the events. However, you can change
these assignments by setting the event’s Port property to the index of the
signal that y ou want to trigger the event.

Data Types Allowed for Input Events
For multiple input events to a trigger port, th e data types of all signals must
be identica l. If you use signals of different da ta types as input events, an error
message appears when you try to simulate your model.

For example , you can mux two input signals of type double to use as input
events to a chart.
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However, you cannot mux two input signals of different data types, such as
boolean and double .

Behavior of Edge-Triggered Input Events
At any given time step, input events are checked in ascending order based
on their port numbers. The chart awakens once per valid event. For
edge-triggered input events, multiple edges can occur in the same time step,
which wake the chart more than once in that time step. In this situation,
events occur (and wake the chart) in an ascending order based on their port
numbers.

Behavior of Function-Call Input Events
For function-call input events, only o ne trigger event exists. The caller of
the function-call event explicitly calls and executes the chart. Only one
function-call can be valid in a single time step.

Defining Output Events

What Is an Output Event?
An output event is an event that occurs in a Stateflow chart, but is visible in
Simulink blocks outside the chart. This type of event allows a chart to notify
other blocks in a model about events that occur in the chart.
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You can define multiple output events for a given chart, and you can create a
chart output port for each output event (see “Port” on page 8-9). Your model
can use the output ports to trigger the ou tput events in other Simulink blocks
in the same model.

How to Define an Output Event
To define an output even t, follow these steps:

1 Add an event to the Stateflow chart, as described in “Adding Events” on
page 8-2.

2 Set the Scope property for the event to Output to Simulink.

For each output event you define, a Simulink output port is added to the
Stateflow block. Output events must be scalar.

3 If you want this chart to call a subsystem, do one of the following:

• To call an edge-triggered subsystem, set the Trigger property of the
output event to Either Edge.

See “Defining Edge-Triggered Output Events” on page 13-25 for an
example of a Stateflow block calling an edge-triggered subsystem in a
Simulink model.

• To call a function-call subsystem, set the Trigger property of the output
event to Function Call.

See “Defining Function-Call Output Events” on page 13-21 for an
example of a Stateflow block calling a function-call subsystem.

Associating an Output Event with an Output Port
The Port property associates an output event with an output port on the
chart block that parents the event. This property specifies the position of the
output port relative to other output event ports on the Chart block. Output
event ports appear below output data ports on the right side of a chart block.

All output ports appear sequentially from top to bottom; therefore, output
data ports appear before output event ports. As you add output events, their
default Port properties appear sequ entially at the end of the existing port list.
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You can change the default port assignment of an event by resetting its Port
property. When you change the Port property for an output event, the ports
for the remaining output events autom atically renumber, preserving the
original order. For example, assume that there are three output events, OE1,
OE2, and OE3, which associate with the output ports 4, 5, and 6, respectively. If
you change the Port property for OE2to 6, the ports for OE1and OE3renumber
to 4 and 5, respectively.

Accessing Simulink ® Subsystems from Stateflow ®

Events

To access the Simulink subsystem asso ciated with a State flow event, follow
these steps:

1 In the Stateflow Editor, right-click the state that contains the event of
interest.

2 Select Explore.

Using the Explore menu, you can access all events defined in the selected
state.

3 Select the desired event.

The Simulink subsystem associated with the event appears.
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For example, you can access the Simul ink subsystem associated with the
chart shift_logic in the sf_car model, as shown.

When you select the CALC_THevent, the Simulink subsystem Threshold
Calculation appears.
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Setting Event Triggers

You can trigger a Stateflow block via a change in control signal
(edge-triggered event) or a Simulink bl ock that outputs function-call events
(function-call-triggered event). You spe cify the trigger by selecting an option
in the Trigger field of the Event properties dialog.

Note You cannot mix edge-triggered and fun ction-call-triggered input events
in a single Stateflow chart. If the chart detects this violati on during parsing
or code generation, an error message appears.

Using Edge Triggers

You can use edge triggers to trigger a Stateflow block when a control signal
changes. Use edge triggers when you can tolerate a delay from the time the
trigger occurs to the time of execution . An edge trigger causes a subsystem to
execute at the beginning of the next simulation time step, regardless of when
triggering actually occurred d uring the previous time step.
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To trigger a Stateflow block via a change in control signal, set the Trigger
property in the Event properties dialog to one of these edge triggers:

Edge Trigger Type Description

Rising Rising edge trigger, where the control signal changes
from either 0 or a negative value to a positive value.

Falling Falling edge trigger, where the control signal changes
from either 0 or a positive value to a negative value.

Either Either rising or falling edge trigger.

Function call Function-call subsystem in a Simulink model that
triggers an event in a Stateflow chart.

Note To use this type of trigger, you must have a
programmed function-call subsystem and a Stateflow
block in the Simulink model.

In all cases, the signal must cross 0 to constitute a valid edge trigger. For
example, a signal that changes from -1 to 1 is a valid rising edge, but a signal
that changes from 1 to 2 is not a valid rising edge.

Using Function-Call Triggers

You can use a function-call subsystem in a Simulink model to trigger an event
in a Stateflow chart. Before using this t ype of trigger, you must first create a
triggered subsystem whose execution is determined by logic internal to an
S-function instead of the value of a signal (see “Function-Call Subsystems” in
the Simulink softwar e documentation).

Function-call triggers call function-c all subsystems immediately, even if the
call occurs in the middle of a time step.

To trigger the Stateflow block via a Simulink block that outputs function-call
events, set the Trigger property in the Event properties dialog to Function
call. This action changes all other inpu t events for the Stateflow chart to
Function call.
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Sharing Events with Stateflow ® External Code

In this section...

“Exporting Events to Stateflow ® External Code” on page 8-18

“Importing Events from Stateflow ® External Code” on page 8-19

Exporting Events to Stateflow ® External Code
Stateflow ® machines can export events that t rigger Stateflow charts in the
model. Exported events are children o f the Stateflow machine. You cannot
define exported events at any other level in the Stateflow hierarchy.

How to Export Events
To export an event, follow these steps:

1 Add an event to the Stateflow machin e, as described in “Adding Events
Using the Model Explorer” on page 8-3.

In the Model Hierarchy pane of the Model Explorer, the Stateflow
machine has the same name as the Simulink ® model. For example, consider
the model sf_car .
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In this model, the Stateflow machine is sf_car (highlighted) and not
shift_logic , which is the Stateflow chart.

2 Set the Scope property of the event to Exported, as described in “Setting
Event Properties in the Event Dialog” on page 8-6.

Format of Exported Events in External Code
The Stateflow code generator generat es a function for each exported event.
The C prototype for the exported event function takes the form

void external_broadcast_EVENT()

where EVENTis the name of the exported event. External code built into a
target can trigger the event by invoking the event function. If you define an
exported event named switch_on , external code can trigger this event by
invoking the generated function external_broadcast_switch_on .

See “Exported Events” on page 13-34 for examples of how to trigger an
exported event and how to export a Stateflow event to Stateflow external code.

Importing Events from Stateflow ® External Code
The Stateflow machine is the parent of imported events defined by external
code. You can import an event to build a custom target, which triggers the
imported event in external code.

How to Import Events
To import an event, follow these steps:

1 Add an event to the Stateflow machin e, as described in “Adding Events
Using the Model Explorer” on page 8-3.

2 Set the Scope property of the event to Imported, as described in “Setting
Event Properties in the Event Dialog” on page 8-6.
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Note You must use the Model Explorer to add imported events to the
Stateflow machine (see “Adding Events Using the Model Explorer” on page
8-3).

Format of Imported Events in External Code
Stateflow software assumes that externa l code defines each imported event as
a function of the form

void external_broadcast_EVENT

where EVENTis the name of the imported even t. If the Stateflow machine
imports an external event named switch_on , Stateflow software assumes
that external code defines a function named external_broadcast_switch_on
that broadcasts the event to external code. When you build a target for the
Stateflow machine, the Stateflow code g enerator encodes actions that signal
imported events as calls to external bro adcast event functions in the external
code.

See “Imported Events” on page 13-36 for an example of a Stateflow external
code event imported into the Stateflow hierarchy.
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Using Implicit Events

In this section...

“What Are Implicit Events?” on page 8-21

“Referencing Implicit Events” on page 8-21

“Example of an Implicit Event” on page 8-22

What Are Implicit Events?
Implicit events are built-in events that occur when a chart executes:

• Chart waking up

• Entry into a state

• Exit from a state

• Value assigned to an internal data object

These events are implicit because you do not define or trigger them explicitly.
Implicit events are children of the chart in which they occur and are visible
only in the parent chart.

Referencing Implicit Events
To reference implicit events, ac tion statements use this syntax:

event(object)

where event is the name of the implicit event and object is the state or
data in which the event occurs.

Each keyword below generates implicit events in the action language notation
for states and transitions.

Implicit Event Meaning

change( data_name)
or chg( data_name)

Specifies and implicitly generates a local event
when Stateflow ® software writes a value to the
variable data_name .
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Implicit Event Meaning

enter (state_name)
or en( state_name)

Specifies and implicitly generates a local event
when the specified state_name is entered.

exit (state_name)
or ex( state_name)

Specifies and implicitly generates a local event
when the specified state_name is exited.

tick Specifies and implicitly generates a local event when
the chart of the action being evaluated awakens.

wakeup Same as the tick keyword.

If more than one object has the same name, the event reference must qualify
the name of the object with the name of its ancestor. These examples are
valid references to implicit events:

enter(switch_on)
en(switch_on)
change(engine.rpm)

Note The tick (or wakeup ) event refers to the chart containing the action
being evaluated. The event cannot ref er to a different chart by argument.

Example of an Implicit Event
This example illustrates use of implicit tick events.

8-22



Using Implicit Events

Fan and Heater are parallel (AND) superstate s. The first time that an event
awakens the Stateflow chart, the states Fan.Off and Heater.Off become
active.

Assume that you are running a discrete-time simulation. Each time that the
chart awakens, a tick event broadcast occurs. After four broadcasts, the
transition from Fan.Off to Fan.On occurs. Similarly, after three broadcasts,
the transition from Heater.Off to Heater.On occurs.

For information about the after operator, see “Using Temporal Logic in State
Actions and Transitions” on page 9-57.
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Counting Events

In this section...

“When to Count Events” on page 8-24

“How to Count Events” on page 8-24

“Example of Counting Ticks to Store Input Data in a Buffer Array” on page
8-24

When to Count Events
Count events when you want to keep track of explicit or implicit events in
your chart.

How to Count Events
You can count occurrences of explicit and implicit events using the
temporalCount operator. For information about the syntax of this operator,
see “Using Temporal Logic in State Actions and Transitions” on page 9-57.

Example of Counting Ticks to Store Input Data in a
Buffer Array
Suppose you want to store input data in a buffer array during chart
simulation, as shown below.
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Initially, the chart awakens and remains in the Observe state, until the input
data u is positive. Then, the transition to the state Collect_Data occurs.

After the state Collect_Data becomes active, the initial value of the input
data u is assigned to the first el ement of the buffer array y. While this state
is active, each subsequent value of u is assigned to successive elements of y
using the temporalCount operator.

After 10 ticks, the data collection proc ess ends, and the transition to the state
Observe occurs. Just before the state Collect_Data becomes inactive, a
function call to status displays the data collected in the buffer array.
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Best Practices for Using Events in Stateflow ® Charts

In this section...

“Avoid Defining Machine Parented Events” on page 8-26

“Do Not Mix Edge Triggers and Function-Call Triggers in a Chart” on page
8-26

“Avoid Using the enter Implicit Event to Check State Activity” on page 8-26

Avoid Defining Machine Parented Events
If you have multiple charts in your mod el, avoid defining events where the
parent is the Stateflow ® machine. If you broadcast an event to all charts in
your model, the order in which the charts awaken is unknown.

Do Not Mix Edge Triggers and Function-Call Triggers
in a Chart
If you mix input events that use edge triggers and function-call triggers,
the chart detects this violation during parsing or code generation. An error
message appears, and chart execution stops.

Avoid Using the enter Implicit Event to Check State
Activity
Use the in operator instead of the enter implicit event to check state activity.
See “Checking State Activity” on page 9-89 for details.
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Transferring Events Across Models

In this section...

“Copying Event Objects” on page 8-27

“Moving Event Objects” on page 8-27

Copying Event Objects
When you copy a Stateflow ® chart from one Simulink ® model to another, all
event objects in the chart hierarchy are copied except those parented by the
Stateflow machine. However, you can use the Model Explorer to transfer
individual event objects from machine to machine.

To copy objects, follow these steps:

1 In the Contents pane of the Model Explorer, right–click the event object
you want to copy and select Copy from the context menu.

2 In the Model Hierarchy pane, right-click the destination Stateflow
machine and select Paste from the context menu.

Moving Event Objects
To move objects, click the event object in the Contents pane of the Model
Explorer and drag it to the destination Stateflow machine in the Model
Hierarchy pane.
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Using Actions in Stateflow ®

Charts

Defining Action Types (p. 9-3) Gives a description of each type
of action available to states and
transitions and shows their behavior
in an example

Using Operations in Actions (p. 9-15) Describes the available data
operations in Stateflow ® action
language

Using Special Symbols in Actions
(p. 9-23)

Learn the special symbols you can
use in action language notation

Calling C Functions in Actions
(p. 9-26)

Describes the C functions that you
can call directly in Stateflow action
language

Using MATLAB ® Functions and
Data in Actions (p. 9-34)

Tells you how you can call MATLAB ®

functions and access MATLAB
workspace variables in action
language, using the ml namespace
operator or the ml function

Using Data and Event Arguments in
Actions (p. 9-47)

Tells you how to reference data
defined at different levels of
containment in a Stateflow chart
when you use them as arguments
for functions that you call in action
language

Using Arrays in Actions (p. 9-49) Describes how to use Stateflow data
arrays in action language
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Broadcasting Events in Actions
(p. 9-51)

Describes event broadcasting and
directed event broadcasting in action
language

Using Temporal Logic in State
Actions and Transitions (p. 9-57)

Learn how to use temporal logic
operators in Stateflow action
language

Using Change Detection in Actions
(p. 9-75)

Describes how to detect changes in
Stateflow data values at each time
step

Checking State Activity (p. 9-89) Describes how to check state activity
during chart execution

Using Bind Actions to Control
Function-Call Subsystems (p. 9-99)

Describes how to bind a function-call
subsystem to a state
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Defining Action Types

In this section...

“About Action Types” on page 9-3

“State Action Types” on page 9-3

“Transition Action Types” on page 9-8

“Example of Action Type Execution” on page 9-12

About Action Types
You can attach actions to states and tr ansitions through the syntax of their
labels. States specify actions through five action types: entry, during, exit,
bind, and on event_name. Transitions specify actions through four action
types: event trigger, condition, condi tion action, and transition action.

State Action Types
States can have different action types, which include entry , during , exit ,
bind , and, on event_name actions. The actions for states are assigned to an
action type using label notation with this general format:

name/
entry: entry actions
during: during actions
exit: exit actions
bind: data_name, event_name
on event_name: on event_name actions

Different state action types appear in this diagram.
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After you enter the name in the state label, enter a carriage return and
specify the actions for the state.

Note The order you use to enter action types in the label does not matter.

This table summarizes the different state action types and what they do.

State Action Abbreviatio n Description

entry en Executes when the state
becomes active

exit ex Executes wh en the state is
active and a transition out of
the state occurs

during du Executes wh en the state is
active and a specific event
occurs

bind none Binds an ev ent or data object
so that onl y that state and
its child ren can broadcast the
event or change the data value

on event_name none Executes when the state
is active and it receives a
broadcast of event_name
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State Action Abbreviation Description

on after (n, event_name) none Executes when the state is
active and after it receives n
broadcasts of event_name

on before (n,
event_name)

none Executes when the state is
active and before it receives n
broadcasts of event_name

on at (n, event_name) none Executes when the state is
active and it receives exactly n
broadcasts of event_name

on every (n, event_name) none Executes when the state is
active and upon receipt of every
n broadcasts of event_name

For a full description of entry , exit , during , bind , and on event_name
actions, see the topics that follow . For more information about the after ,
before , at , and every temporal logic operators, s ee “Using Temporal Logic in
State Actions and Transitions” on page 9-57.

Note In the preceding table, the temporal logic operators use the syntax of
event-based temporal logic. For absolute-time temporal logic, the operators use
a different syntax. For details, see “Op erators for Absolute-Time Temporal
Logic” on page 9-64.

Entry Actions
Entry actions are preceded by the prefix entry or en for short, followed by a
required colon ( : ), followed by one or more actions. Separate multiple actions
with a carriage return, semicolon ( ; ), or a comma (, ). If you enter the name
and slash followed directly by actions, the actions are interpreted as entry
action(s). This shorthand is useful if you are specifying entry actions only.

Entry actions are executed for a state when the state is entered (becomes
active). In the preceding example in “State Action Types” on page 9-3, the
entry action id = x+y is executed when the state A is entered by the default
transition.
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For a detailed description of the semantics of entering a state, see “Entering a
State” on page 3-32 and “State Execution Example” on page 3-35.

Exit Actions
Exit actions are preceded by the prefix exit or ex for short, followed by a
required colon ( : ), followed by one or more actions. Separate multiple actions
with a carriage return, semicolon ( ; ), or a comma (, ).

Exit actions for a state are executed when the state is active and a transition
out of the state is taken.

For a detailed description of the semant ics of exiting a state, see “Exiting an
Active State” on page 3-34 and “State Execution Example” on page 3-35.

During Actions
During actions are preceded by the prefix during or du for short, followed by a
required colon ( : ), followed by one or more actions. Separate multiple actions
with a carriage return, semicolon ( ; ), or a comma (, ).

During actions are executed for a state when it is active and an event occurs
and no valid transition to another state is available.

For a detailed description of the semantics of executing an active state, see
“Executing an Active State” on page 3-34 and “State Execution Example”
on page 3-35.

Bind Actions
Bind actions are preceded by the prefix bind , followed by a required colon ( : ),
followed by one or more events or data. Separate multiple data/events with
a carriage return, semicolon ( ; ), or a comma (, ).

Bind actions bind the specified data a nd events to a state. Data bound to a
state can be changed by the actions of that state or its children. Other states
and their children are free to read the bound data, but they cannot change it.
Events bound to a state can be broadcast only by that state or its children.
Other states and their children are free to listen for the bound event, but
they cannot send it.
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Bind actions are applicable to a Stateflow ® chart whether the binding state is
active or not. In the preceding example in “State Action Types” on page 9-3,
the bind action bind: id, time_out for state A binds the data id and the
event time_out to state A. This forbids any other state (or its children) in the
Stateflow chart from changing id or broadcasting event time_out .

If another state includes actions that change data or send events that are
bound to another state, a parsing erro r results. The following example
demonstrates a few of these error conditions:

Binding a function-call event to a state also binds the function-call subsystem
that it calls. In this case, the functi on-call subsystem is enabled when the
binding state is entered and disabled when the binding state is exited. For
a detailed description of this feature, see “Using Bind Actions to Control
Function-Call Subsystems” on page 9-99.

On Event _Name Actions
On event_name actions are preceded by the prefix on, followed by a unique
event, event_name, followed by one or more actions. Separate multiple
actions with a carriage return, semicolon ( ; ), or a comma (, ). You can specify
actions for more than one event by adding additional on event_name lines for
different events. If you want different events to trigger different actions, enter
multiple on event_name action statements in the sta te’s label, each specifying
the action for a particular event or set of events, for example:

on ev1: action1();
on ev2: action2();
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On event_name actions execute when the sta te is active and the event
event_name is received by the state. This act ion coincides with execution of
during actions for the state.

For a detailed description of the semantics of executing an active state, see
“Executing an Active State” on page 3-34.

Transition Action Types
In “State Action Types” on page 9-3, you see how you can attach actions to
the label for a state. You can also attach actions to a transition through
its label. Transitions can have differ ent action types, which include event
triggers, conditions, condition actio ns, and transition actions. The actions
for transitions are assigned to an action type using label notation with the
following general format:

event_trigger[ condition]{ condition_action}/ transition_action

The following example shows examples of transition action types:
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Event Triggers
In transition label syntax, event triggers appear first as the name of an event.
They have no distinguishing special character to separate them from other
actions in a transition label. In the example in “Transition Action Types” on
page 9-8, both transitions from state A have event triggers. The transition
from state A to state B has the event trigger event2 and the transition from
state A to state C has the event trigger event1 .
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Event triggers specify an event that cau ses the transition to be taken, provided
the condition, if specified, is true. Spec ifying an event is optional. The absence
of an event indicates that the transition is taken upon the occurrence of any
event. Multiple events are specified using the OR logical operator (|).

Conditions
In transition label syntax, conditio ns are Boolean expressions enclosed in
square brackets ( [] ). In the example in “Transition Action Types” on page
9-8, the transition from state A to state C has the condition temp > 50 .

A condition is a Boolean expression to specify that a transition occurs given
that the specified expression is true. F ollow these guidelines for defining
and using conditions:

• The condition expression must be a Boolean expression that evaluates to
true (1) or false (0).

• The condition expression can consist of any of the following:

- Boolean operators that make comparisons between data and numeric
values

- A function that returns a Boolean value

- An in(state_name) condition that evaluates to true when the state
specified as the argument is active (see “Checking State Activity” on
page 9-89)

Note A chart cannot use the in condition to trigger actions based on the
activity of states in other charts.

- Temporal logic conditions (see “Us ing Temporal Logic in State Actions
and Transitions” on page 9-57)

• The condition expression can call a graphical function, truth table function,
or Embedded MATLAB™ function that returns a numeric value.

For example, [test_function(x, y) < 0] is a valid condition expression.
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Note If the condition expression call s a function with multiple return
values, only the first value applies. The other return values are not used.

• The condition expression should not call a function that causes the
Stateflow chart to change state or modify any variables.

• Boolean expressions can be grouped using & for expressions with AND
relationships and | for expressions with OR relationships.

• Assignment statements are not valid condition expressions.

• Unary increment and decrement action s are not valid condition expressions.

Condition Actions
In transition label syntax, condition a ctions follow the transition condition
and are enclosed in curly braces ( {} ). In the example in “Transition Action
Types” on page 9-8, the transition fro m state A to state C has the condition
action func1() , a function call.

Condition actions are executed as soon a s the condition is evaluated as true,
but before the transition destination has been determined to be valid. If no
condition is specified, an implied condition evaluates to true and the condition
action is executed.

Transition Actions
In transition label syntax, transiti on actions are preceded with a forward
slash (/). In the example in “Transition Action Types” on page 9-8, the
transition from state A to state B has the transition action data1 = 5 .

Transition actions are executed when th e transition is actually taken. They
are executed after the transition destination has been determined to be valid,
and the condition, if specified, is true. If the transition consists of multiple
segments, the transition action is exec uted only when the entire transition
path to the final destination is determined to be valid.
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Example of Action Type Execution
In “State Action Types” on page 9-3 and “Transition Action Types” on page
9-8, you are introduced to the notation and meaning of the Stateflow action
language types. In this topic, you see how Stateflow action language types
interact when you execute this chart.

If the Stateflow chart wakes up, these steps occur:

1 The default transition to state A occurs.

2 The entry action id = x+y executes.

3 The event time_out binds to state A.

4 State A is active.

If state A is active and the Stat eflow chart receives the event event2 , these
steps occur:

1 The exit action broadcast of the event time_out executes.

2 State A becomes inactive.

3 The trans ition action data1 = 5 executes.
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4 State B becomes active.
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If state A is active and the Stateflow chart receives the event event1 , these
steps occur:

1 The condition temp > 50 evaluates.

If the condition is... Then the remaining
steps...

And the transition...

True
(temp > 50)

Execute Occurs

False
(temp <= 50)

Do not execute Does not occur

2 The condition action call to the function func1() executes.

3 The exit action broadcast of the event time_out executes.

4 State A becomes inactive.

5 State C becomes active.
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Using Operations in Actions

In this section...

“Binary and Bitwise Operations” on page 9-15

“Unary Operations” on page 9-17

“Unary Actions” on page 9-18

“Assignment Operations” on page 9-18

“Pointer and Address Operations” on page 9-19

“Type Cast Operations” on page 9-20

“Replacing Operators with Target Functions” on page 9-21

Binary and Bitwise Operations
The table below summarizes the interpretation of all binary operators
inStateflow ® action language. These operators work with the following order
of precedence (1 = highest, 10 = lowest). Binary operators evaluate from left
to right.

You can specify that the binary operators &, ^ , | , &&, and || are interpreted
as bitwise operators in Stateflow generated C code for a chart or for all the
charts in a model. See these individual operators in the table below for
specific binary or bitwise operator interpretations.

Example Precedence Description

a * b 1 Multiplication

a / b 1 Division

a %% b 1 Modulus

a + b 2 Addition

a - b 2 Subtractio n

a >> b 3 Shift opera nd a right by b bits.
Nonintege r operands for this operator
are first c ast to integers before the bits
are shifte d.
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Example Precedence Description

a << b 3 Shift operand a left by b bits. Noninteger
operands for this operator are first cast
to integers before the bits are shifted.

a > b 4 Comparison of the first operand greater
than the second operand

a < b 4 Comparison of the first operand less than
the second operand

a >= b 4 Comparison of the first operand greater
than or equal to the second operand

a <= b 4 Comparison of the first operand less than
or equal to the second operand

a == b 5 Comparison of equality of two operands

a ~= b 5 Comparison of inequality of two operands

a != b 5 Comparison of inequality of two operands

a <> b 5 Comparison of inequality of two operands

a & b 6 One of the following:

• Bitwise AND of two operands

Enabled when Enable C-bit
operations is selected in the Chart
properties dialog. See “Specifying
Chart Properties” on page 13-6.

• Logical AND of two operands

Enabled when Enable C-bit
operations is cleared in the Chart
properties dialog.
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Example Precedence Description

a ^ b 7 One of the following:

• Bitwise XOR of two operands

Enabled when Enable C-bit operations
is selected in the Chart properties dialog.
See “Specifying Chart Properties” on
page 13-6.

• Operand a raised to power b

Enabled when Enable C-bit operations
is cleared in the Chart properties dialog.

a | b 8 One of the following:

• Bitwise OR of two operands

Enabled when Enable C-bit operations
is selected in the Chart properties dialog.
See “Specifying Chart Properties” on
page 13-6.

• Logical OR of two operands

Enabled when Enable C-bit operations
is cleared in the Chart properties dialog.

a && b 9 Logical AND of two operands

a || b 10 Logical OR of two operands

Unary Operations
The following unary operators are sup ported in Stateflow action language.
Unary operators have higher precedence than binary operators and are
evaluated right to left (right associative).
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Example Description

~a Logical NOT of a

Complement of a (if bitops is enabled)

!a Logical NOT of a

-a Negative of a

Unary Actions
The following unary actions are suppo rted in Stateflow action language.

Example Description

a++ Increment a

a-- Decrement a

Assignment Operations
The following assignment operations are supported in Stateflow action
language.

Example Description

a = expression Simple assignment

a := expression Used primarily with fixed-point numbers. See
“Assignment (=, :=) Operations” on page 11-24 for a
detailed description.

a += expression Equivalent to a = a + expression

a -= expression Equivalent to a = a - expression

a *= expression Equivalent to a = a * expression

a /= expression Equivalent to a = a / expression

The following assignment operations are supported in Stateflow action
language when Enable C-bit operations is selected in the properties dialog
for the chart. See “Specifying Chart Properties” on page 13-6.
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Example Description

a |= expression Equivalent to a = a | expression (bit operation). See
operation a | b in “Binary and Bitwise Operations”
on page 9-15.

a &= expression Equivalent to a = a & expression (bit operation). See
operation a & b in “Binary and Bitwise Operations”
on page 9-15.

a ^= expression Equivalent to a = a ^ expression (bit operation). See
operation a ^ b in “Binary and Bitwise Operations”
on page 9-15.

Pointer and Address Operations
The address operator is available for use with both custom code variables and
Stateflow variables. The pointer operator is available for use with custom
code variables only.

Note The action language parser uses a relaxed set of restrictions. As a
result, many syntax errors are not trapped until compilation.

The following examples show syntax that is valid for use with custom code
variables only.

varStruct.field = <expression>;
(*varPtr) = <expression>;
varPtr->field = <expression>;
myVar = varPtr->field;
varPtrArray[index]->field = <expression>;
varPtrArray[expression]->field = <expression>;
myVar = varPtrArray[expression]->field;

The following examples show syntax that is valid for use both with custom
code variables and with Stateflow variables.

varPtr = &var;
ptr = &varArray[<expression>];
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*(&var) = <expression>;
function(&varA, &varB, &varC);
function(&sf.varArray[<expression>]);

Type Cast Operations
You can use type cast operators to convert a value of one type to a value that
can be represented in another type. Normally, you do not need to use type
cast operators in actions because Stateflow software checks whether the
types involved in a variable assignment differ and compensates by inserting
the required type cast operator of the target language (typically C) in the
generated code. However, external (c ustom) code might require data in a
different type from those currently avai lable. In this case, Stateflow software
cannot determine the required type casts, and you must explicitly use a type
cast operator to specify the target language type cast operator to generate.

For example, you might have a custom co de function that requires integer
RGB values for a graphic plot. You might have these values in Stateflow data,
but only in data of type double . To call this function, you must type cast the
original data and assign the result to integers, which you use as arguments
to the function.

Stateflow type cast operations have two forms: the MATLAB ® type cast form
and the explicit form using the cast operator. These operators and the special
type operator, which works with the explicit cast operator, are described in
the topics that follow.

MATLAB ® Form Type Cast Operators
The MATLAB type casting form has the general form

<type_op>( <expression>)

<type_op> is a conversion type operator that can be double , single , int32 ,
int16 , int8 , uint32 , uint16 , uint8 , or boolean . <expression> is the
expression to be converted. For example, you can cast the expression x+3 to a
16-bit unsigned integer and assign its value to the data y as follows:

y = uint16(x+3)
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Explicit Type Cast Operator
You can also type cast with the explicit cast operator, which has the following
general form:

cast( <expression>, <type>)

As in the preceding example, the statement

y = cast(x+3,uint16)

will cast the expression x+3 to a 16-bit unsigned integer and assign it to y,
which can be of any type.

type Operator
To make type casting more convenient, you can use a type operator that
works with the explicit type cast operator cast to let you assign types to
data based on the ty pes of other data.

The type operator returns the type of an existing Stateflow data according to
the general form

type( <data>)

where <data> is the data whose type you want to return.

The return value from a type operation can be used only in an explicit cast
operation. For example, if you want to convert the data y to the same type as
that of data z, use the following statement:

cast(y,type(z))

In this case, the data z can have any acceptable Stateflow type.

Replacing Operators with Target Functions
The target function library published by Real-Time Workshop ® Embedded
Coder™ code generation software allows you to replace a subset of arithmetic
operators with target functions. Operator entries of the target function library
can specify integral or fixed-point operand and result patterns. Operator
entries may be used for the following built-in operators:
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+
-
*
/

For example, you can replace an expression such as y = u1 + u2 with a
target function, provided that u1, u2, and y have types that permit a match
with an addition entry in the target function library.

Stateflow chart semantics may limit ope rator entry matching because it uses
the target integer size as its intermediate type in all arithmetic expressions.
For example, suppose a Stateflow action contains this arithmetic expression:

y = (u1 + u2) % 3

This expression computes the intermediate addition into a target integer. If
the target integer size is 32 bits, you cannot replace this expression with a
target function library operator ent ry for addition that produces a signed
16-bit result without loss of precision.

To learn how to create and register function replacement tables in a target
function library, see “Target Function Libraries” in theReal-Time Workshop
Embedded Coder User’s Guide. To select and view target function libraries,
see “Selecting and Viewing Target Function Libraries” in the Real-Time
Workshop ® User’s Guide.
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Using Special Symbols in Actions

In this section...

“Comment Symbols” on page 9-23

“Hexadecimal Notation Symbols” on page 9-23

“Infinity Symbol, inf ” on page 9-24

“Line Continuation Symbol, ...” on page 9-24

“Literal Code S ymbol, $” on page 9-24

“MATLAB ® Displ ay Symbol, ;” on page 9-24

“Single-Preci sion Floating-Point Number Symbol, F” on page 9-24

“Time Symbol, t ” on page 9-24

Comment Symbols
Use the symbols %, //, and /* to represent comments in Stateflow ® action
language as shown in the following examples:

% MATLAB comment line
// C++ comment line
/* C comment lin e */

You can optionally include comments in generated code for an embedded
target (see “Real-Time Workshop Pane: Comments” in the Real-Time
Workshop ® Reference) or a Stateflow custom target (see “Configuring a
Custom Target” on page 18-44). Stateflow action language comments in
generated code are represented with m ultibyte character code. This means
that you can have comments in code with characters for non-English
alphabets such as Japanese Kanji characters.

Hexadecimal Notation Symbols
Stateflow action language supports C style hexadecimal notation. For
example, 0xFF . You can use hexadecimal value s wherever you can use decimal
values.
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Infinity Symbol, inf
Use the MATLAB ® symbol inf to represent infinit y in Stateflow action
language. Calculations like n/0 , where n is any nonzero real value, result in
inf .

Line Continuation Symbol, ...
Use the characters ... at the end of a line of action language to indicate that
the expression continues on the next line.

Literal Code Symbol, $
Use $ characters to mark action language that you want the parser to ignore
but you want to appear in the generated code. For example,

$
ptr -> field = 1.0;
$

The parser is completely disabled during the processing of anything between
the $ characters. Frequent use of literals is discouraged.

MATLAB ® Display Symbol, ;
Omitting the semicolon after an exp ression displays the results of the
expression in the MATLAB Command Window. If you use a semicolon, the
results are not displayed.

Single-Precision Floating-Point Number Symbol, F
Use a trailing F to specify single-precision floating-point numbers in Stateflow
action language. For example, you can use the action statement x = 4.56F;
to specify a single-precision consta nt with the value 4.56. If a trailing F does
not appear with a number, it is assumed to be double-precision.

Time Symbol, t
Use the letter t to represent absolute tim e inherited from a Simulink ® signal
in simulation targets. For example, the condition [t - On_time > Duration]
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specifies that the condition is true if the value of On_time subtracted from the
simulation time t is greater than the value of Duration .

Note The meaning of t for nonsimulation targets is undefined since it is
dependent upon the specific application and target hardware.
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Calling C Functions in Actions

In this section...

“Calling C Library Functions” on page 9-26

“Calling the abs Function” on page 9-27

“Calling min and max Functions” on page 9-27

“Replacing C Math Library Functions with Target-Specific
Implementations” on page 9-28

“Calling Custom C Code Functions” on page 9-30

Calling C Library Functions
You can call the following small subset of the C Math Library functions:

abs * ** acos ** asin ** atan ** atan2 ceil **

cos ** cosh ** exp ** fabs floor ** fmod

labs ldexp log ** log10 ** pow rand

sin ** sinh ** sqrt ** tan ** tanh **

* The Stateflow ® abs function goes beyond that of its standard C counterpart
with its own built-in functionality. See “Calling the abs Function” on page
9-27.

** You can also replace calls to the C Math Library with target-specific
implementations for this subset of f unctions. For more information, see
“Replacing C Math Library Functions wit h Target-Specific Implementations”
on page 9-28

You can call the above C Math Library functions without doing anything
special as long as you are careful to call them with the right data types. In
case of a type mismatch,Stateflow software replaces the input argument with
a cast of the original argument to the expected type. For example, if you call
the sin function with an integer argument, Stateflow software replaces the
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argument with a cast of the original argument to a floating-point number of
type double .

If you call other C library functions not specified above, be sure to include
the appropriate #include... directive in the Custom Code pane of the
Simulation Target dialog. For details, see Chapter 18, “Building Targets”.

Calling the abs Function
Interpretation of the Stateflow abs function goes beyond the standard C
version to include integer and floating-point arguments of all types as follows:

• If x is an integer of type int32 , the standard C function abs applies to
x, or abs(x) .

• If x is an integer of type other than int32 , the standard C abs function
applies to a cast of x as an integer of type int32 , or abs((int32)x) .

• If x is a floating-point number of type double , the standard C function
fabs applies to x, or fabs(x) .

• If x is a floating-point number of type single , the standard C function fabs
applies to a cast of x as a double , or fabs((double)x) .

• If x is a fixed-point number, t he standard C function fabs applies to a cast
of the fixed-point number as a double , or fabs((double) Vx) , where Vx
is the real-world value of x.

If you want to use the abs function in the strict sense of standard C, be
sure to cast its argument or return val ues to integer types. See “Type Cast
Operations” on page 9-20.

Note If you declare x in custom code, the standard C abs function applies in
all cases. For instructions on insertin g custom code into Stateflow charts,
see Chapter 18, “Building Targets”.

Calling min and max Functions
Although min and max are not C library functions, you can use them by
emitting the following macros automatically at the top of generated code.
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#define min(x1,x2) ((x1) > (x2))? (x2):(x1)
#define max(x1,x2) ((x1) > (x2))? (x1):(x2)

To allow compatibility with user graphical functions named min() or max() ,
generated code uses a mangled name of the following form: <prefix>_min .
However, if you export min() or max() graphical functions to other Stateflow
charts in the Stateflow machine, the n ame of these functions can no longer be
emitted with mangled names in generated code and conflict occurs. To avoid
this conflict, rename the min() and max() graphical functions.

Replacing C Math Library Functions with
Target-Specific Implementations
You can use the target function library published by Real-Time Workshop ®

Embedded Coder™ code generation software to replace the default
implementations of a subset of C-library functions with target-specific
implementations (see “Supported Tar get Library Functions” on page 9-28).
When you specify a target function library, Stateflow software generates code
that calls the target implementation s instead of the associated C library
functions. Furthermore, Stateflow software also uses target implementations
in cases where the compiler generat es calls to math functions, such as in
fixed-point arithmetic utilities.

Using Target Function Libraries
To learn how to create and register function replacement tables in a target
function library, see “Target Function Libraries” in the Real-Time Workshop
Embedded Coder User’s Guide. To select and view target function libraries,
see “Selecting and Viewing Target Function Libraries” in the Real-Time
Workshop ® User’s Guide.

Supported Target Library Functions
You can replace the following C Math Library functions with target-specific
implementations:

• abs
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Note See “Replacing Calls to abs” on page 9-29.

• acos

• asin

• atan

• ceil

• cos

• cosh

• exp

• floor

• log

• log10

• sin

• sinh

• sqrt

• tan

• tanh

Replacing Calls to abs
Stateflow software replaces calls to abs with target functions as follows:

For: Action:

abs with floating-point arguments Replaces with target function

abs with integer arguments Re places with ANSI C function

abs with fixed-point arguments (zero
bias)

Replaces with ANSI C function

abs with fixed-point arguments
(non-zero bias)

Generates error
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Calling Custom C Code Functions
You can install y our own C code functions for use in the Stateflow action
language for sim ulation and for C code generation.

• “Specifying Cus tom C Functions for Simulation” on page 9-30

• “Specifying Cus tom C Functions for Code Generation” on page 9-30

• “Guidelines for Using Custom C Functions in Stateflow ® Action Language”
on page 9-30

• “Function Call T ransition Action Example” on page 9-31

• “Function Call S tate Action Example” on page 9-31

• “Passing Argume nts by Reference” on page 9-32

Specifying Custom C Functions for Simulation
To specify custom C functions for simulation , see Chapter 18, “Building
Targets”.

Specifying Custom C Functions for Code Generation
To specify custom C functions for code generation, follow these steps:

1 In the Stateflo w Editor, select Simulation > Configuration Parameters.

The Configuration Parameters dialog box appears, displaying the general
Real-Time Workshop configuration parameters.

2 In the left pane of the Configuration Parameters dialog, select Custom
Code and specify your custom C files as de scribed in “Real-Time Workshop
Pane: Custom Code”.

Guidelines f or Using Custom C Functions in Stateflow ® Action
Language
Follow these guidelines when using your own C code functions in the Stateflow
action langu age:

• Define a func tion by its name, any arguments in parentheses, and an
optional sem icolon.
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• Pass string parameters to user-written functions using single quotation
marks. For example, func('string') .

• An action can nest function calls.

• An action can invoke functions that return a scalar value (of type double
in the case of MATLAB ® functions and of any type in the case of C
user-written functions).

Function Call Transition Action Example
These are example formats of function ca lls using transition action notation.

If S1 is active, event e occurs, c is true, and the transition destination is
determined, then a function call is made to function_name with arg1 , arg2 ,
and arg3 . The transition action in the transition from S2 to S3 shows a
function call nested within another function call.

Function Call State Action Example
These are example formats of function calls using state action notation.
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When the default transition into S1 occurs, S1 is marked active and then its
entry action, a function call to function_name1 with the specified arguments,
is executed and completed. If S2 is active and an event occurs, the during
action, a function call to function_name3 with the specified arguments,
executes and completes.

Passing Arguments by Reference
A Stateflow action can pass arguments to a user-written function by reference
rather than by value. In particular, an action can pass a pointer to a value
rather than the value itself. For ex ample, an action could contain the
following call

f(&x);

where f is a custom-code C function that expects a pointer to x as an argument.

If x is the name of a data item defined in the Stateflow hierarchy, the following
rules apply.

• Do not use pointers to pass data items input from a Simulink ® model.

If you need to pass an input item by reference, for example, an array, assign
the item to a local data item and pass the local item by reference.
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• If x is a Simulink output data item having a data type other than double ,
the chart property Use strong data typing with Simulink IO must be
on (see “Specifying Chart Properties” on page 13-6).

• If the data type of x is boolean , you must turn off the coder option
Use bitsets to store state-configuration (see “Optimizing Real-Time
Workshop ® Code Generation of the Main Model” on page 18-26).

• If x is an array with its first index property set to 0 (see “Setting Data
Properties in the Data Dialog” on page 7-7), then the function must be
called as follows.

f(&(x[0]));

This passes a pointer to the first element of x to the function.

• If x is an array with its first index property set to a nonzero number (for
example, 1), the function must be called in the following way:

f(&(x[1])) ;

This passes a pointer to the first element of x to the function.
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Using MATLAB ® Functions and Data in Actions

In this section...

“MATLAB ® Functions and Stateflow ® Code Generation” on page 9-34

“ml Namespace Operator” on page 9-34

“ml Function” on page 9-36

“ml Expressions” on page 9-37

“Which ml Should I Use?” on page 9-38

“ml Data Type” on page 9-39

“Inferring Return Size for m l Expressions” on page 9-42

MATLAB ® Functions and Stateflow ® Code Generation
You can call MATLAB ® functions and access MATLAB workspace variables in
Stateflow ® actions, using the ml namespace operator or the ml function.

Caution Because MATLAB functions are not available in a target
environment, do not use the ml namespace operator and the ml function if you
plan to build a code generation target.

ml Namespace Operator
The ml namespace operator uses standard dot (.) notation to reference
MATLAB variables and functions in action language. For example, the
statement a = ml.x returns the value of the MA TLAB workspace variable x
to the Stateflow data a.

For functions, the syntax is as follows:

[return_val1, return_val2,...] = ml.matfunc(arg1, arg2,...)

For example, the statement [a, b, c] = ml.matfunc(x, y) passes the
return values from the MATLAB function matfunc to the Stateflow data a,
b, and c.
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If the MATLAB function you call does not require arguments, you must
still include the parentheses, as sho wn in the preceding examples. If you
omit the parentheses, Stateflow soft ware interprets the function name as
a workspace variable, which, when not found, generates a run-time error
during simulation.

Examples
In these examples, x, y, and z are workspace variables and d1 and d2 are
Stateflow data:

• a = ml.sin(ml.x)

In this example, the MATLAB function sin evaluates the sine of x, which
is then assigned to Stateflow data variable a. However, because x is a
workspace variable, you must use the namespace operator to access it.
Hence, ml.x is used instead of just x.

• a = ml.sin(d1)

In this example, the MATLAB function sin evaluates the sine of d1, which
is assigned to Stateflow data variable a. Because d1 is Stateflow data, you
can access it directly.

• ml.x = d1*d2/ml.y

The result of the expression is assigned to x. If x does not exist prior to
simulation, it is automatically created in the MATLAB workspace.

• ml.v[5][6][7] = ml.matfunc(ml.x[1][3], ml.y[3], d1, d2,
' string')

The workspace variables x and y are arrays. x[1][3] is the (1,3) element
of the two-dimensional array variable x. y[3] is the third element of
the one-dimensional array variable y. The last argument, ' string' , is
a literal string.

The return from the call to matfunc is assigned to element (5,6,7)
of the workspace array, v. If v does not exist prior to simulation, it is
automatically created in the MATLAB workspace.
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ml Function
You can use the ml function to specify calls to MATLAB functions through a
string expressi on in the action language. The format for the ml function call
uses this notati on:

ml(evalString, arg1, arg2,...);

evalString is a string expression that is evaluated in the MATLAB
workspace. It co ntains a MATLAB command (or a set of commands, each
separated by a semicolon) to execute along with format specifiers ( %g, %f,
%d, etc.) that p rovide formatted substitution of the other arguments ( arg1 ,
arg2 , etc.) in to evalString.

The format spe cifiers used in ml functions are the same as those used in the C
functions pri ntf and sprintf . The ml function call is equivalent to calling
the MATLAB eva l function with the ml namespace operator if the arguments
arg1,arg2,.. . are restricted to scalars or string literals in the following
command:

ml.eval(ml.sprintf(evalString, arg1, arg2,...))

Stateflow sof tware assumes scalar return values from ml namespace operator
and ml functi on calls when they are used as arguments in this context. See
“Inferring R eturn Size for ml Expressions” on page 9-42.

Examples
In these exam ples, x is a MATLAB workspace variable, and d1 and d2 are
Stateflow d ata:

• a = ml('sin( x)')

In this exam ple, the ml function calls the MATLAB function sin to evaluate
the sine of x in the MATLAB workspace. The result is then assigned
to Stateflo w data variable a. Because x is a workspace variable, and
sin(x) is evaluated in the MATLAB workspace, you enter it directly in the
evalStrin g argument ( 'sin(x)' ).

• a = ml('sin (%f)', d1)

In this exa mple, the MATLAB function sin evaluates the sine of d1 in
the MATLAB workspace and assigns the result to Stateflow data variable
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a. Because d1 is Stateflow data, its value is inserted in the evalString
argument ( 'sin(%f)' ) using the format expression %f. This means that if
d1 = 1.5, the expression evaluated in the MATLAB workspace is sin(1.5) .

• a = ml('matfunc(%g, ''abcdefg'', x, %f)', d1, d2)

In this example, the string 'matfunc(%g, ''abcdefg'', x, %f)' is
the evalString shown in the preceding format statement. Stateflow
data d1 and d2 are inserted into that string with the format specifiers %g
and %f, respectively. The string ''abcdefg'' is a string literal with two
single pairs of quotation marks used to enclose it because it is part of the
evaluation string, which is already enclosed in single quotation marks.

• sfmat_44 = ml('rand(4)')

In this example, a square 4-by-4 matrix of random numbers between 0 and
1 is returned and assigned to the Stateflow data sf_mat44 . Stateflow data
sf_mat44 must be defined as a 4-by-4 array before simulation. If its size is
different, a size mismatch error is generated during run-time.

ml Expressions
You can mix ml namespace operator and ml function expressions along with
Stateflow data in larger expressions. The following example squares the sine
and cosine of an angle in workspace variable X and adds them:

ml.power(ml.sin(ml.X),2) + ml('power(cos(X),2)')

The first operand uses the ml namespace operator to call the sin function.
Its argument is ml.X , since X is in the MATLAB workspace. The second
operand uses the ml function. Because X is in the workspace, it is included in
the evalString expression as X. The squaring of each operand is performed
with the MATLAB power function, which takes two arguments: the value
to square, and the power value, 2.

Expressions using the ml namespace operator and the ml function can be used
as arguments for ml namespace operator and ml function expressions. The
following example nests ml expressions at three different levels:

a = ml.power(ml.sin(ml.X + ml('cos(Y)')),2)

In composing your ml expressions, follow the levels of precedence set out in
“Binary and Bitwise Operations” on pa ge 9-15. To repeat a warning note in
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that section, be sure to use parenthes es around power expressions with the ^
operator when you use them in conjuncti on with other arithmetic operators.

Stateflow software checks expressions f or data size mismatches in your action
language during parsing of your charts and during run-time. Because the
return values for ml expressions are not known until run-time, Stateflow
software must infer the size of their return values. See “Inferring Return
Size for ml Expressions” on page 9-42.

Which ml Should I Use?
In most cases, the notation of the ml namespace operator is more
straightforward. However, using the ml function call does offer a few
advantages:

• Use the ml function to dynamically const ruct workspace variables.

The following example creates four new MATLAB matrices:

This example demonstrates the use of a Stateflow for loop to create four
new matrix variables in the MATLAB workspace. The default transition
initializes the Stateflow counter i to 0 while the transition segment
between the top two juncti ons increments it by 1. If i is less than 5, the
transition segment back to the top j unction is taken and evaluates the ml
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function call ml('A%d = rand(%d)',i,i) for the current value of i. When i
is greater than or equal to 5, the tra nsition segment between the bottom
two junctions is taken and execution stops.

This results in the following MATLAB commands, which create a
workspace scalar ( A1) and three matrices ( A2, A3, A4):

A1 = rand(1)
A2 = rand(2)
A3 = rand(3)
A4 = rand(4)

• Use the ml function with full MATLAB notation.

You cannot use full MATLAB notation with the ml namespace operator, as
demonstrated by the f ollowing example:

ml.A = ml.magic(4)
B = ml('A + A''')

This example sets the workspace variable A to a magic 4-by-4 matrix using
the ml namespace operator. Stateflow data B is then set to the addition
of A and its transpose matrix, A' , which produces a symmetric matrix.
Because the ml namespace operator cannot evaluate the expression A' , the
ml function is used instead. However, you can call the MATLAB function
transpose with the ml namespace operator in the following equivalent
expression:

B = ml.A + ml.transpose(ml.A)

As another example, you cannot use arguments with cell arrays or subscript
expressions involving colons with the ml namespace operator. However,
these can be included in an ml function call.

ml Data Type
Stateflow data of type ml is typed internally with the MATLAB type mxArray .
You can assign (store) any type of data available in the Stateflow hierarchy to
a data of type ml . These types include any data type defined in the Stateflow
hierarchy or returned from the MATLAB workspace with the ml namespace
operator or ml function.
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Rules for Using ml Data Type
These rules apply to Stateflow data of type ml :

• You can initialize ml data from the MATLAB workspace just like other data
in the Stateflow hierarchy (see “In itializing Data from the MATLAB ® Base
Workspace” on page 7-30).

• Any numerical scalar or array of ml data in the Stateflow hierarchy can
participate in any kind of unary operation and any kind of binary operation
with any other data in the hierarchy.

If ml data participates in any numerical operation with other data, the size
of the ml data must be inferred from the context in which it is used, just
as return data from the ml namespace operator and ml function are. See
“Inferring Return Size for m l Expressions” on page 9-42.

Note The preceding rule does not apply to ml data storing MATLAB 64-bit
integers. You can use ml data to store 64-bit MATLAB integers but you
cannot use 64-bit integers in Stateflow action language.

• You cannot define ml data with the scope Constant.

This option is disabled in the Data properties dialog and in the Model
Explorer for Stateflow data of type ml .

• You can use ml data to build a simulation target ( sfun ) but not to build a
code generation target ( rtw ).

• If data of type ml contains an array, you can access the elements of the
array via indexing with these rules:

a You can index only arrays with numerical elements.

b You can index numerical arrays only by their dimension.

In other words, you can access only one-dimensional arrays by a single
index value. You cannot access a multidimensional array with a single
index value.

c The first index value for each dimension of an array is 1, and not 0, as in
C-language arrays.
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In the examples that follow, mldata is a Stateflow data of type ml ,
ws_num_array is a 2-by-2 MATLAB workspace array with numerical
values, and ws_str_array is a 2-by-2 MATLAB workspace array with
string values.

mldata = ml.ws_num_array; /* OK */
n21 = mldata[2][1]; /* OK for numerical data of type ml */
n21 = mldata[3]; /* NOT OK for 2-by-2 array data */
mldata = ml.ws_str_array; /* OK */
s21 = mldata[2][1]; /* NOT OK for string data of type ml*/

• ml data cannot have a scope outside a Stateflow chart; that is, you cannot
define the scope of ml data as Input to Simulink or Output to Simulink.

Place Holder for Workspace Data
Both the ml namespace operator and the ml function can access data directly
in the MATLAB workspace and return it to a Stateflow chart. However,
maintaining data in the MATLAB worksp ace can present Stateflow users with
conflicts with other data already resident in the workspace. Consequently,
with the ml data type, you can maintain ml data in a Stateflow chart and use
it for MATLAB computations in S tateflow action language.

As an example, in the following Stateflow action language statements,
mldata1 and mldata2 are Stateflow data of type ml :

mldata1 = ml.rand(3);
mldata2 = ml.transpose(mldata1);

In the first line of this example, mldata1 receives the return value of the
MATLAB function rand , which, in this case, returns a 3-by-3 array of random
numbers. Note that mldata1 is not specified as an array or sized in any way.
It can receive any MATLAB workspace data or the return of any MATLAB
function because it is defined as a Stateflow data of type ml .

In the second line of the example, mldata2 , also of Stateflow data type ml ,
receives the transpose matrix of the matrix in mldata1 . It is assigned the
return value of the MATLAB function transpose in which mldata1 is the
argument.
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Note the differences in notation if the preceding example were to use
MATLAB workspace data ( wsdata1 and wsdata2 ) instead of Stateflow ml
data to hold the generated matrices:

ml.wsdata1 = ml.rand(3);
ml.wsdata2 = ml.transpose(ml.wsdata1);

In this case, each workspace data must be accessed through the ml namespace
operator.

Inferring Return Size for ml Expressions
Stateflow expressions using the ml namespace operator and the ml function
are evaluated in the MATLAB workspace at run-time. This means that the
actual size of the data returned from the following expression types is known
only at run-time:

• MATLAB workspace data or functions using the ml namespace operator or
the ml function call

For example, the size of the return values from the expressions ml.var ,
ml.func() , or ml(evalString, arg1, arg2,...) , where var is a
MATLAB workspace variable and func is a MATLAB function, cannot be
known until run-time.

• Stateflow data of type ml

• Graphical functions that return Stateflow data of type ml

When any of these expressions is used in action language, Stateflow code
generation must create temporary Stateflow data, invisible to the user, to
hold their intermediate returns for evaluation of the full expression of which
they are a part. Because the size of these return values is not known until
run-time, Stateflow software must employ context rules to infer their size for
the creation of the temporary data.

During run-time, if the actual returned value from one of these commands
differs from the inferred size of the te mporary variable chosen to store it, a
size mismatch error appears. To preve nt these run-time errors, use these
guidelines to write action language statements with MATLAB commands or
ml data:
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1 The return sizes of MATLAB commands or data in an expression must
match the return sizes of peer expressions.

For example, in the expression ml.func() * (x + ml.y) , if x is a 3-by-2
matrix, then ml.func() and ml.y are also assumed to evaluate to 3-by-2
matrices. If either returns a value of different size (other than a scalar),
an error results during run-time.

2 Expressions that return a scalar never produce an error.

You can combine matrices and scal ars in larger expressions because
MATLAB commands practice scalar expansion. For example, in the larger
expression ml.x + y, if y is a 3-by-2 matrix and ml.x returns a scalar, the
resulting value is determined by adding the scalar value of ml.x to every
member of y to produce a matrix with the size of y, that is, a 3-by-2. The
same rule applies to subtraction ( - ), multiplication ( * ), division ( / ), and
any other binary operations.

3 MATLAB commands or Stateflow data of type ml can be members of the
following independent levels of expr ession, for which the return size must
be resolved:

• Arguments

The expression for each function argument is a larger expression for
which the return size of MATLAB commands or Stateflow data of type
ml must be determined. For ex ample, in the expression z + func(x +
ml.y) , the size of ml.y has nothing to do with the size of z, because
ml.y is used at the function argument le vel. However, the return size
for func(x + ml.y) must match the size of z, because they are both at
the same expression level.

• Array indices

The expression for an array index is an independent level of expression
that is required to be scalar in size. For example, in the expression x +
arr [y] , the size of y has nothing to do with the size of x because y and x
are at different levels of expression, and y must be a scalar.

4 The return size for an indexed array element access must be a scalar.

For example, the expression x[1][1] , where x is a 3-by-2 array, must
evaluate to a scalar.
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5 MATLAB command or data elements used in an expression for the input
argument for a MATLAB function called through the ml namespace
operator are resolved for size using the rule for peer expressions (preceding
rule 1) for the expression itself, because there is no size definition prototype
available.

For example, in the function call ml.func(x + ml.y) , if x is a 3-by-2 array,
ml.y must return a 3-by-2 array or a scalar.

6 MATLAB command or data elements used for the input argument for a
graphical function in an expression are resolved for size by the function’s
prototype.

For example, if the graphical function gfunc has the prototype
gfunc(arg1) , where arg1 is a 2-by-3 Stateflow data array, then the calling
expression, gfunc(ml.y + x) , requires that both ml.y and x evaluate to
2-by-3 arrays (or scalars) during run-time.

7 ml function calls can take only scalar or string literal arguments. Any
MATLAB command or data used to specify an argument for the ml function
must return a scalar value.

8 In an assignment, the size of the right-hand expression must match the size
of the left-hand expression, with one exception: if the left-hand expression
is a single MATLAB variable such as ml.x or a single Stateflow data of type
ml , then the sizes of both left-hand ex pression and right-hand expression
are determined by the right-hand expression.

For example, in the expression s = ml.func(x) , where x is a 3-by-2 matrix
and s is scalar Stateflow data, ml.func(x) must return a scalar to match
the left-hand expression, s. However, in the expression ml.y = x + s ,
where x is a 3-by-2 data array and s is scalar, the left-hand expression,
workspace variable y, is assigned the size of a 3-by-2 array to match the
size of the right-hand expression, x+s , a 3-by-2 array.

9 In an assignment, Stateflow column vectors on the left-hand side are
compatible with MATLAB row or column vectors of the same size on the
right-hand side.

A matrix you define with a row dimension of 1 is considered a row vector. A
matrix you define with one dimensio n or with a column dimension of 1 is
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considered a column vector. For example, in the expression s = ml.func() ,
where ml.func() returns a 1-by-3 matrix, if s is a vector of size 3, the
assignment is valid.

10 If you cannot resolve the return size of MATLAB command or data
elements in a larger expression by any of the preceding rules, they are
assumed to return scalar values.

For example, in the expression ml.x = ml.y + ml.z , none of the preceding
rules can be used to infer a common size among ml.x , ml.y, and ml.z . In
this case, both ml.y and ml.z are assumed to return scalar values. And
even if ml.y and ml.z return matching sizes at run-time, if they return
nonscalar values, a size mismatch error results.

11 The preceding rules for resolving t he size of member MATLAB commands
or Stateflow data of type ml in a larger expression apply only to cases in
which numeric values are expected for that member. For nonnumeric
returns, a run-time error results.

For example, the expression x + ml.str , where ml.str is a string
workspace variable, produces a run-time error stating that ml.str is not
a numeric type.

Note Member MATLAB commands or data of type ml in a larger expression
are limited to numeric values (scalar or array) only if they participate in
numeric expressions.

12 There are special cases in which no size checking is done to resolve the
size of MATLAB command or data expressions that are members of larger
expressions. In the cases shown, use of a singular MATLAB element such
as ml.var , ml.func() , ml(evalString, arg1, arg2,...) , Stateflow data
of type ml , or a graphical function return ing a Stateflow data of type ml ,
does not require that size checking be enforced at run-time. In these cases,
assignment of a return to the left-hand side of an assignment statement or
to a function argument is made without consideration for a size mismatch
between the two:

• An assignment in which the left-hand side is a MATLAB workspace
variable
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For example, in the expression ml.x = ml.y , ml.y is a MATLAB
workspace variable of any size and typ e (structure, cell array, string,
and so on).

• An assignment in which the left-hand side is a data of type ml

For example, in the expression m_x = ml.func() , m_x is a Stateflow
data of type ml .

• Input arguments of a MATLAB function

For example, in the expression ml.func(m_x, ml.x, gfunc()) , m_x is a
Stateflow data of type ml , ml.x is a MATLAB workspace variable of any
size and type, and gfunc() is a Stateflow graphical function that returns
a Stateflow data of type ml . Even though nothing is done to check the
size of the input type, if the passed-in data is not of the expected type, an
error results from the function call ml.func() .

• Arguments for a graphical function that are specified as Stateflow data
of type ml in its prototype statement

Note If inputs in the preceding cases are replaced with non-MATLAB
numeric Stateflow data, a conversion to an ml type is performed.
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Using Data and Event Arguments in Actions

When you use data and event objects a s arguments to functions that you
call in action language, they are assumed to be defined at the same level in
the hierarchy as the action language that references them. If they are not
found at that level, Stateflow ® action language attempts to resolve the object
name by searching up the hierarchy. Data or event object arguments that are
parented anywhere else must have their path hierarchies defined explicitly.

In the following example, state A calls the graphical function addit to add the
Stateflow data x and y and store the result in data z.

The following Model Explorer windows show that the data z is defined for
state A, but the data x and y are defined for state AA, a substate of A.
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The call to function addit from state A can resolve z because it is owned by A.
However, it cannot resolve x and y by looking above state A. Therefore, the
function call must reference x and y explicitly to their owner, state AA.

There are a variety of functions that you can call in Stateflow action language
that use data as arguments. See the following sections:

• “Using Graphical Functions to Extend Actions” on page 6-28

• “Calling C Functions in Actions” on page 9-26

• “Using MATLAB ® Functions and Data in Actions” on page 9-34

Only temporal logic operators take events as an argument. See “Using
Temporal Logic in State Action s and Transitions” on page 9-57.
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Using Arrays in Actions

In this section...

“Array Notation” on page 9-49

“Arrays and Custom Code” on page 9-50

Array Notation
A Stateflow ® action uses C style syntax and zero-based indexing by default
to access array elements. This differs from MATLAB ® notation, which uses
1-based indexing. For example, suppose you define a Stateflow input A of
size [3 4] . To access the element in the fir st row, second column, use the
expression A[0][1] . Here are other examples o f how to access and assign
values to array elements in Stateflow actions:

local_array[1][8][0] = 10;

local_array[i][j][k] = 77;

var = local_array[i][j][k];

As an exception to this style, scalar expansion is available within the action
language. This statement assigns a value of 10 to all the elements of the
array local_array .

local_array = 10;

Scalar expansion is available for pe rforming general operations. This
statement is valid if the arrays array_1 , array_2 , and array_3 have the
same value for the Sizes property.

array_1 = (3*array_2) + array_3;

Note Use the same notation for accessing arrays in Stateflow charts, from
Simulink ® models, and from custom code.
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Arrays and Custo m Code
Stateflow actio n language provides the same syntax for Stateflow arrays
and custom code arrays.

Note Any array va riable that is referred to in a Stateflow chart but is not
defined in the St ateflow hierarchy is identified as a custom code variable.
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Broadcasting Events in Actions

In this section...

“About Events in Actions” on page 9-51

“Event Broadcasting” on page 9-51

“Directed Event Broadc asting” on page 9-53

About Events in Actions
You can specify an event to be broadcast in the action language. Events have
hierarchy (a parent) and scope. The parent and scope together define a range
of access to events. It is primarily the e vent’s parent that determines who can
trigger on the event (has receive rights). See “Adding Events” on page 8-2
for more information.

Event Broadcasting
You can broadcast events in the action language to synchronize AND (parallel)
states. Recursive event broadcasts can lead to definition of cyclic behavior.
You can detect cyclic behavi or only during simulation.

Event Broadcast State Action Example
The following is an example of the state action notation for an event broadcast:
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See “Event Broadcast State Action Exa mple” on page 3-93 for information on
the semantics of this notation.

Event Broadcast Transition Action Example
The following is an example of transition action notation for an event
broadcast.

See “Event Broadcast Transition Action with a Nested Event Broadcast
Example” on page 3-96 for information on the semantics of this notation.
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Directed Event B roadcasting
You can specify a directed event broadcast in ac tions. Using a directed event
broadcast, you can broadcast a specific event to a specific receiver state in the
same chart. The r eceiving state must be active at the time the broadcast is
executed to receive and potentially act on the directed event broadcast.

Directed event broadcasting is a more efficient means of synchronization
among parallel (AND) states. Using directed eve nt broadcasting improves the
efficiency of t he generated code. As is true in undirected event broadcasting,
recursive event broadcasts can lead to definition of cyclic behavior.

Note An action in one chart cannot broadcast events to states defined in
another chart .

Directed Event Broadcasting Using send
The format of t he directed event broadcast with send is as follows:

send(event_name,state_name)

where event_n ame is broadcast to state_name and any offspring of that state
in the hierarc hy. The event sent must be visible to both the sending state
and the recei ving state ( state_name ).

The state_na me argument can include a full hierarchy path to the state.
For example, if the state A contains the state A1, send an event e to state A1
with the foll owing broadcast:

send(e, A.A1)
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Note Do not use the chart name in the full hierarchy path to a state. Formal
chart names include the subsystem in which they are located. For example, in
the demo model fuelsys , the chart control logic is in the subsystem fuel
rate controller . This means that the formal name for the chart control
logic is fuel rate controller/control logic . This name includes the
forward slash character (’/’), which is not a valid character in Stateflow ®

identifiers.

This example of a directed event broadcast uses the
send(event_name,state_name) transition action.

In this example, event E_one must be visible in both A and B. See “Directed
Event Broadcast Using Send Example” on page 3-105 for information on the
semantics of this notation.
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Directed Event Broadcasting Using Qualified Event Names
The format of the direct event broadca st using qualified event names is as
follows:

state_name.event_name

where event_name is broadcast to its owning state ( state_name ) and any
offspring of that state in the hierarchy. The event sent is visible only to the
receiving state ( state_name ).

The state_name argument can also include a full hierarchy path to the
receiving state. Again, do not use the chart name in the full path name
of the state.

The following example illustrates the use of a qualified event name in a
directed event broadcast.
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In this example, event E_one is visible only to state B. See “Directed Event
Broadcasting Using Qualified Even t Names Example” on page 3-106 for
information on the semantics of this notation.
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Using Temporal Logic in State Actions and Transitions

In this section...

“What Is Temporal Logic?” on page 9-57

“Rules for Using Temporal Logic Operators” on page 9-57

“Operators for Event-Based Temporal Logic” on page 9-58

“Examples of Event-Based Temporal Logic” on page 9-60

“Notations for Event-Based Temporal Logic” on page 9-62

“Operators for Absolute-Time Temporal Logic” on page 9-64

“Defining Time Delays” on page 9-65

“Examples of Absolute-Time Temporal Logic” on page 9-66

“Running a Demo Model” on page 9-67

“Using Absolute-Time Temporal L ogic in a Conditionally Executed
Subsystem” on page 9-67

“How Sample Time Affects Chart Execution” on page 9-71

“Tips for Using Absolute-Time Temporal Logic” on page 9-72

What Is Temporal Logic?
Temporal logic controls execution of a Stateflow ® chart in terms of time.
In state actions and transitions, you can use two types of temporal logic:
event-based and absolute-time. Even t-based temporal logic keeps track of
recurring events, and absolute-time tem poral logic defines time periods based
on the simulation time of your chart. To operate on these recurring events or
simulation time, you use built-in functions called temporal logic operators.

Rules for Using Temporal Logic Operators
These rules apply to the use of temporal logic operators:

• You can use any explicit or implicit event as a base event for a temporal
operator. A base event is a recurring event on which a temporal operator
operates.
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• For a chart with no input events, you can use the tick or wakeup event to
denote the implicit event of a chart waking up.

• Temporal logic operators can appear onl y in state actions and in transitions
that originate from states.

Note This restriction means that you ca nnot use temporal logic operators
in conditions on default transitions or flow graph transitions.

Every temporal logic operator has an a ssociated state: the state in which
the action appears or from which the transition originates.

• You must use event notation (see “Notations for Event-Based Temporal
Logic” on page 9-62) to express event- based temporal logic in state actions.

Operators for Event-Based Temporal Logic
For event-based temporal logic, use the operators as described below.

Operator Syntax Description

after after(n, E)

where E is the base event for the
after operator and n is one of the
following:

• A positive integer

• An expression that evaluates to
a positive integer value

Returns true if the base event E
has occurred at least n times since
activation of the associated state.
Otherwise, the operator returns
false.

In a chart with no input events,
after(n, tick) or after(n,
wakeup) returns true if the chart
has woken up n times or more since
activation of the associated state.

Resets the counter for E to 0
each time the associated state
reactivates.
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Operator Syntax Description

before before(n, E)

where E is the base event for the
before operator and n is one of the
following:

• A positive integer

• An expression that evaluates to
a positive integer value

Returns true if the base event E
has occurred fewer than n times
since activation of the associated
state. Otherwise, the operator
returns false.

In a chart with no input events,
before(n, tick) or before(n,
wakeup) returns true if the chart
has woken up fewer than n times
since activation of the associated
state.

Resets the counter for E to 0
each time the associated state
reactivates.

at at(n, E)

where E is the base event for the
at operator and n is one of the
following:

• A positive integer

• An expression that evaluates to
a positive integer value

Returns true only at the nth

occurrence of the base event E since
activation of the associated state.
Otherwise, the operator returns
false.

In a chart with no input events,
at(n, tick) or at(n, wakeup)
returns true if the chart has woken
up for the nth time since activation
of the associated state.

Resets the counter for E to 0
each time the associated state
reactivates.
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Operator Syntax Description

every every(n, E)

where E is the base event for the
every operator and n is one of the
following:

• A positive integer

• An expression that evaluates to
a positive integer value

Returns true at every nth

occurrence of the base event
E since activation of the associated
state. Otherwise, the operator
returns false.

In a chart with no input events,
every(n, tick) or every(n,
wakeup) returns true if the chart
has woken up an integer multiple
n times since activation of the
associated state.

Resets the counter for E to 0
each time the associated state
reactivates. Therefore, this
operator is useful only in state
actions and not in transitions.

temporalCount temporalCount(E)

where E is the base event for the
temporalCount operator.

Increments by 1 and returns a
positive integer value for each
occurrence of the base event E that
takes place after activation of the
associated state. Otherwise, the
operator returns a value of 0.

Resets the counter for E to 0
each time the associated state
reactivates.

Examples of Event-Based Temporal Logic
These examples illustrate usage of event-based temporal logic in state actions
and transitions.

9-60



Using Temporal Logic in State Actions and Transitions

Operator Usage Example Description

after State action

(on after)

on after(5, CLK): status('on'); A status message
appears during each
CLK cycle, starting
5 clock cycles after
activation of the
state.

after Transition ROTATE[after(10, CLK)] A transition out
of the associated
state occurs only on
broadcast of a ROTATE
event, but no sooner
than 10 CLK cycles
after activation of
the state.

before State action

(on before)

on before(MAX, CLK): temp++; The temp variable
increments once per
CLK cycle until the
state reaches the MAX
limit.

before Transition ROTATE[before(10, CLK)] A transition out
of the associated
state occurs only on
broadcast of a ROTATE
event, but no later
than 10 CLK cycles
after activation of
the state.

at State action

(on at)

on at(10, CLK): status('on'); A status message
appears at exactly
10 CLK cycles after
activation of the
state.
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Operator Usage Example Description

at Transition ROTATE[at(10, CLK)] A transition out
of the associated
state occurs only
on broadcast of a
ROTATEevent, at
exactly 10 CLK cycles
after activation of
the state.

every State action

(on every)

on every(5, CLK): status('on'); A status message
appears every 5
CLK cycles after
activation of the
state.

temporalCount State action

(during)

du: y = mm[temporalCount(tick)]; This action counts
and returns the
integer number
of ticks that have
elapsed since
activation of the
state. Then, the
action assigns to
the variable y the
value of the mm
array whose index
is the value that
the temporalCount
operator returns.

Notations for Event-Based Temporal Logic
You can use one of two notations to express event-based temporal logic.

Event Notation
Use event notation to define a state ac tion or a transition condition that
depends only on a base event.
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Event notation follows this syntax:

tlo(n, E)[C]

where

• tlo is a Boolean temporal logic operator ( after , before , at , or every )

• n is the occurrence count of the operator

• E is the base event of the operator

• C is an optional condition expression

Conditional Notation
Use conditional notation to define a tra nsition condition that depends on base
and nonbase events.

Conditional notation follows this syntax:

E1[ tlo(n, E2) && C]

where

• E1 is any nonbase event

• tlo is a Boolean temporal logic operator ( after , before , at , or every )

• n is the occurrence count of the operator

• E2 is the base event of the operator

• C is an optional condition expression

Examples of Event and Conditional Notation

Notation Usage Example Description

Event State action

(on after)

on after(5, CLK): temp = WARM; The temp variable
becomes WARM5
CLK cycles after
activation of the
state.
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Notation Usage Example Description

Event Transition after(10, CLK)[temp == COLD] A transition out of
the associated state
occurs if the temp
variable is COLD,
but no sooner than
10 CLK cycles after
activation of the
state.

Conditional Transition ON[after(5, CLK) && temp == COLD] A transition out
of the associated
state occurs only on
broadcast of an ON
event, but no sooner
than 5 CLK cycles
after activation of
the state and only if
the temp variable is
COLD.

Note You must use event notation in state actions, because the syntax of
state actions does not support the use of conditional notation.

Operators for Absolute-Time Temporal Logic
For absolute-time temporal logic, use the operators as described below.

Operator Syntax Description

after after(n, sec)

where n is any positive number or
expression and sec is a keyword
that denotes the simulation time
elapsed since activation of the
associated state.

Returns true if n seconds of
simulation time have elapsed since
activation of the associated state.
Otherwise, the operator returns
false.

Resets the counter for sec to 0
each time the associated state
reactivates.

9-64



Using Temporal Logic in State Actions and Transitions

Operator Syntax Description

before before(n, sec)

where n is any positive number or
expression and sec is a keyword
that denotes the simulation time
elapsed since activation of the
associated state.

Returns true if fewer than n
seconds of simulation time have
elapsed since activation of the
associated state. Otherwise, the
operator returns false.

Resets the counter for sec to 0
each time the associated state
reactivates.

temporalCount temporalCount(sec)

where sec is a keyword that
denotes the simulation time
elapsed since activation of the
associated state.

Counts and returns the number
of seconds of simulation time that
have elapsed since activation of
the associated state.

Resets the counter for sec to 0
each time the associated state
reactivates.

Defining Time Delays
Use the keyword sec to define simulation time that has elapsed since
activation of a state. For example, the c ontinuous-time chart below defines
two absolute time delays in transitions. (See Chapter 10, “Modeling
Continuous-Time Sys tems in Stateflow ® Charts” for information about
modeling continuous-time systems.)

Chart execution occurs as follows:
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1 When the chart awakens, the state Input activates first.

2 After 5.33 seconds of simulation time pass, the transition from Input to
Output occurs.

3 The state Input deactivates, and the state Output activates.

4 After another 10.5 seconds of simula tion time pass, the transition from
Output to Input occurs.

5 The state Output deactivates, and the state Input activates.

6 Steps 2–5 repeat, until the simulation ends.

Note Use the keyword sec only in state actions and in transitions that
originate from states.

Examples of Absolute-Time Temporal Logic
These examples illustrate usage of absolute-time temporal logic in state
actions and transitions.

Operator Usage Example Description

after State action

(on after)

on after(12.3, sec): temp = LOW; The temp variable
becomes LOWafter
12.3 seconds of
simulation time
have passed, since
activation of the
state.

after Transition after(12.34, sec) A transition out of
the associated state
occurs after 12.34
seconds of simulation
time have passed,
since activation of
the state.
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Operator Usage Example Description

before Transition [temp > 75 && before(12.34, sec)] A transition out of
the associated state
occurs if the variable
temp exceeds 75 and
fewer than 12.34
seconds have elapsed
since activation of
the state.

temporalCount State action

(exit)

ex: y = temporalCount(sec); This action counts
and returns the
number of seconds
of simulation time
that pass between
activation and
deactivation of the
state.

Running a Demo Model
The sf_boiler demo illustrates the use of abs olute-time temporal logic to
implement a bang-bang controller. To run the model, follow these steps:

1 Type sf_boiler at the MATLAB ® command prompt.

2 Select Simulation > Start in the Simulink ® model window.

Using Absolute-Time Temporal Logic in a
Conditionally Executed Subsystem
You can use absolute-time temporal logic in a chart that resides in a
conditionally executed subsystem. (See “Creating Conditional Subsystems” in
the Simulink documentation for detai ls.) When the subsy stem is disabled,
the chart becomes inactive and the temporal logic operator pauses while the
chart is asleep. The operator does not c ontinue to count simulation time until
the subsystem is reenabled and the chart is awake.
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Example of Absolute-Time in an Enabled Subsystem
Suppose you have an enabled subsystem that contains a chart with the after
operator. In the subsystem, the parameter States when enabling is set
to held .

Model with Enabled Subsystem Chart in Enabled Subsystem

The Signal Builder block provides this input signal to the subsystem.
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The total time elapsed in an enabled state (both A and B) is as follows.
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When the input signal enables the subsystem at time t = 0, the state A
becomes active, or enabled. While the state is active, the time elapsed
increases. However, when the subsystem is disabled at t = 2, the chart goes to
sleep and state A becomes inactive.

For 2 < t < 6, the time elapsed in an enabled state stays frozen at 2 seconds
because neither state is active. When the chart wakes up at t = 6, state A
becomes active again and time elaps ed starts to increase. Note that the
transition from state A to state B depends on the time elapsed while state A is
enabled, not on the simulation time. Therefore, state A stays active until t = 9,
so that the time elapsed in that state totals 5 seconds.

When the transition from A to B occurs at t = 9, the output value y changes
from 0 to 1.
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This mode l behavior applies only to subsystems where you set the Enable
block par ameter States when enabling to held . If you set the parameter
to reset , the Stateflow chart reinitializes completely when the subsystem
is reenabled. In other words, default transitions execute and any temporal
logic counters reset to 0.

Note These semantics also apply to the before operator.

How Samp le Time Affects Chart Execution
If a Stat eflow chart has a discrete sample time, any action in the chart occurs
at integ er multiples of this sample time.

A Simple Example
Suppose you have a chart with a discrete sample time of 0.1 seconds:
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State A becomes active at time t = 0, and the transition to state B occurs at t =
2.2 seconds. This behavior applies because the Simulink solver does not wake
the chart a t exactly t = 2.15 seconds. Instead, the solver wakes the chart at
integer mu ltiples of 0.1 seconds, such as t = 2.1 and 2.2 seconds.

Note This b ehavior also applies to the before operator.

Tips for Us ing Absolute-Time Temporal Logic

Use the after Operator to Replace the at Operator
If you use t he at operator with absolute-time temporal logic, an error message
appears wh en you try to simulate your model. Use the after operator instead.

Suppose that you want to define a time delay using the transition at(5.33,
sec) .
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Change the tra nsition to after(5.33, sec) , as shown below.

Use an Out er Self-Loop Transition with the after Operator to
Replace the every Operator
If you us e the every operator with absolute-time temporal logic, an error
message appears when you try to simulate your model. Use an outer self-loop
transit ion with the after operator instead.

Suppose that you want to print a status message for an active state every 2.5
seconds during chart execution, as shown in the state action of Check_status .
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Replace the state action with an outer self-loop transition, as shown below.
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You must also add a history junction in the state so that the chart remembers
the state settings prior to each self-l oop transition. (See “Using History
Junctions to Extend Charts and States” on page 6-3.)
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Using Change Detection in Actions

In this section...

“About Change Detection” on page 9-75

“Running a Model That Demonstrates Change Detection” on page 9-76

“How Change Detection Works” on page 9-79

“Change Detection Operators” on page 9-82

“Change Detection Example” on page 9-86

About Change Detection
A Stateflow ® chart can detect changes in the following types of chart data
from one time step to the next:

• Inputs

• Outputs

• Local variables

• Data bound to Simulink ® data store memory

(For more information, see “Sharing Global Data with Simulink ® Models”
on page 7-33.)

For each of these types of data, you can us e operators that detect the following
changes:

Type of Change Operator

Data changes v alue from the
beginning of t he last time step to the
beginning of the current time step.

See “hasChanged Operator” on page
9-83.
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Type of Change Operator

Data changes from a specified value
at the beginning of the last time step
to a different value at the beginning
of the current time step.

See “hasChangedFrom Operator” on
page 9-84.

Data changes to a specified value at
the beginning of the current time
step from a different value at the
beginning of the last time step.

See “hasChangedTo Operator” on
page 9-85.

Change detection operators return 1 i f the data value changes or 0 if there is
no change. See “Change Detection Operators” on page 9-82.

Running a Model That Demonstrates Change
Detection
Stateflow software ships with a model sf_tetris2 that demonstrates how
you can detect asynchronous changes in i nputs — in this case, user keystrokes
— to manipulate a Tetris shape as it moves through the playing field. The
Stateflow chart TetrisLogic implements this logic:
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TetrisLo gic contains a subchart called Moving that calls the operator
hasChang ed to determine when users press any of the Tetris control keys, and
then mov es the shape accordingly. Here is a look inside the subchart:
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To run the demo model from the MATLAB ® workspace, follow these steps:

1 At the MATLAB command prompt, type:

demos

The MATLAB Help Browser opens the Demos tab in the Help Navigator
pane.

2 In the Help Navigator pane, navigate to Simulink > Stateflow > General
Applications.
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3 In the right contents pane, click Tetris.

A description of the Tetris demo model appears.

4 In the upper right corner of the contents pane, click the link Open this
model.

The model opens on your desktop.

Tip You can also open the model by typing sf_tetris2 at the MATLAB
command prompt.

How Change Detection Works
A Stateflow chart detects changes in c hart data by evaluating values at time
step boundaries. That is, the chart compares the value at the beginning of
the previous execution step with the v alue at the beginning of the current
execution step. To detect changes, the c hart automatically double-buffers
these values in local variables, as follows:

Local Buffer: Stores:

var_name_prev Value of data at the beginning of the last
time step

var_name_start Value of data at the beginning of the
current time step

Note Double-buffering occurs once per time step except if multiple input
events occur in the same time step. The n, double-buffering occurs once per
input event (see “Handling Changes When Multiple Input Events Occur”
on page 9-82).

When you invoke change detection operations in an action, Stateflow software
performs the following operations:
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1 Double-buffers data values after a Simulink event triggers the chart, but
before the chart begins execution.

2 Compares values in _prev and _start buffers. If the values match, the
change detection operator returns 0 ( no change); otherwise, it returns
1 (change).
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The following diagram places these tasks in the context of the chart life cycle:
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The fact that buffering occurs before chart execution has implications for
change detection in the following scenarios:

• “Handling Transient Changes in Local Variables” on page 9-82

• “Handling Changes When Multiple Input Events Occur” on page 9-82

Handling Transient Changes in Local Variables
Stateflow software attempts to filter out transient changes in local chart
variables by evaluating their valu es only at time boundaries (see “How
Change Detection Works” on page 9-79). This behavior means that the
software evaluates the specified local variable only once at the end of the
execution step and, therefore, returns a consistent result. That is, the return
value remains constant even if the value of the local variable fluctuates
within a given time step.

For example, suppose that in the current time step a local variable temp
changes from its value at the previous time step, but then reverts to the
original value. In this case, the operator hasChanged(temp) returns 0 for the
next time step, indicating that no change occurred. For more information, see
“Change Detection Operators” on page 9-82.

Handling Changes When Multiple Input Events Occur
When multiple input events occur in the same time step, Stateflow software
updates the _prev and _start buffers once per event. In this way, a chart
detects changes between input events, even if the changes occur more than
once in a given time step.

Change Detection Operators
Change detection operators check for changes in chart inputs, outputs, and
local variables, and in Stateflow data that is bound to Simulink data store
memory.

You can invoke change detection ope rators wherever you call built-in
functions in a chart — in state actions, transition actions, condition actions,
and conditions. There are three change detection operators:
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hasChanged Operator (p. 9-83) Detects any change since the last
time step

hasChangedFrom Operator (p. 9-84) Detects whether data changes from
a specified value

hasChangedTo Operator (p. 9-85) Detects whether data changes to a
specified value

hasChanged Operator
The hasChanged operator detects any change in Stateflow data since the last
time step, using the following heuristic:

hasChanged x x x
otherwise
if prev start( ) = ≠{ 0

1

where xstart represents the value at the beg inning of the current time step
and xprev represents the value at the begi nning of the previous time step.

Syntax.

hasChanged ( u )
hasChanged ( m [ expr ] )
hasChanged ( s [ expr ] )

where u is a scalar or matrix variable, mis a matrix, and s is aggregate data.

The arguments u, m, and s must be one of the following data types:

• Input, output, or local variable in a Stateflow chart

• Stateflow data that is bound to Simulink data store memory

The arguments cannot be express ions or custom code variables.

Description. hasChanged ( u ) returns 1 if u changes value since the last
time step. If u is a matrix, hasChanged returns 1 if any element of u changes
value since the last time step.
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hasChanged ( m [ expr ] ) returns 1 if the value at location expr of matrix
m changes value since the last time step. expr can be an arbitrary expression
that evaluates to a scalar value.

hasChanged ( s [ expr ] ) returns 1 if the value at location expr of
aggregate data s has changed since the last time step. s must be a fully
qualified name, such as u.foo.bar , which resolves to an aggregate data type
such as a structure or bus signal. expr can be an arbitrary expression that
evaluates to a scalar value.

All forms of hasChanged return zero if a chart writes to the data, but does
not change its value.

hasChangedFrom Operator
The hasChangedFrom operator detects when Stateflow data changes from a
specified value since the last time step, using the following heuristic:

hasChangedFrom x x x x and x
otherwise
if xprev start prev( , )0

0

0
1= ≠ ={

where xstart represents the value at the beg inning of the current time step
and xprev represents the value at the begi nning of the previous time step.

Syntax.

hasChangedFrom ( u , v )
hasChangedFrom ( m [ expr ], v )
hasChangedFrom ( s [ expr ], v )

where u is a scalar or matrix variable, m is a matrix, and s is aggregate data.

The arguments u, m, and s must be one of the following data types:

• Input, output, or local variable in a Stateflow chart

• Stateflow data that is bound to Simulink data store memory
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Note The first arguments u, m, and s cannot be expressions or custom code
variables. The second argument v can be an expression. However, if the first
argument is a matrix variable, then v must resolve to a scalar value or a
matrix value with the same dimensions as the first argument.

Description. hasChangedFrom ( u, v ) returns 1 if u changes from the
value specified by v since the last time step. If u is a matrix variable whose
elements all equal the value specified by v, hasChangedFrom returns 1 if one
or more elements of the matrix chang es to a different value in the current
time step.

hasChangedFrom ( m [ expr ], v) returns 1 if the value at location expr of
matrix m changes from the value specified by v since the last time step. expr
can be an arbitrary expression th at evaluates to a scalar value.

hasChangedFrom ( s [ expr ], v) returns 1 if the value at location expr
of aggregate data s changes from the value specified by v since the last time
step. s must be a fully qualified name, such as u.foo.bar , which resolves to
an aggregate data type such as a structure or bus signal. expr can be an
arbitrary expression that evaluates to a scalar value.

hasChangedTo Operator
The hasChangedTo operator detects when Stateflow data changes to a
specified value since the last time step, using the following heuristic:

hasChangedTo x x x x and x
otherwise
if xprev start start( , )0

0

0
1= ≠ ={

where xstart represents the value at the beg inning of the current time step
and xprev represents the value at the begi nning of the previous time step.

Syntax.

hasChangedTo ( u , v )
hasChangedTo ( m [ expr ], v )
hasChangedTo ( s [ expr ], v )
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where u is a scalar or matrix variable, m is a matrix, and s is aggregate data.

The arguments u, m, and s must be one of the following data types:

• Input, output, or local variable in a Stateflow chart

• Stateflow data that is bound to Simulink data store memory

Note The first arguments u, m, and s cannot be expressions or custom code
variables. The second argument v can be an expression. However, if the first
argument is a matrix variable, then v must resolve to either a scalar value or
a matrix value with the same dimensions as the first argument.

Description. hasChangedTo ( u, v ) returns 1 if u changes to the value
specified by v in the current time step. If u is a matrix variable, hasChangedTo
returns 1 if any its of its elements changes value so that all elements of the
matrix equal the value specified by v in the current time step.

hasChangedTo ( m [ expr ], v) returns 1 if the value at location expr of
matrix m changes to the value specified by v in the current time step. expr can
be an arbitrary expression that evaluates to a scalar value.

hasChangedTo ( s [ expr ], v) returns 1 if the value at location expr
of aggregate data s changes to the value specified by v in the current time
step. s must be a fully qualified name, such as u.foo.bar , which resolves to
an aggregate data type such as a structure or bus signal. expr can be an
arbitrary expression that evaluates to a scalar value.

Change Detection Example
The following model shows how to use the hasChanged , hasChangedFrom ,
and hasChangedTo operators to detect specific changes in an input signal.
In this example, a Ramp block sends a discrete, increasing time signal to a
Stateflow chart, as follows:
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The model uses a fixed-step solver with a step size of 1. The signal increments
by 1 at each time step. The chart analyzes the input signal for the following
changes at each time step:

• Any change from the previous time step

• Change to the value 3

• Change from the value 3

To check the signal, the chart calls th ree change detection operators in a
transition action, and ou tputs the return values as y1 , y2 , and y3 , as follows:

During simulation, the outputs y1 , y2 , and y3 represent changes in the input
signal, as shown in this scope:
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Checking State Activity

In this section...

“When to Check State Activity” on page 9-89

“How to Check State Activity” on page 9-89

“The in Operator” on page 9-89

“How Checking State Activity Works” on page 9-90

“State Resolution for Identical ly Named Substates” on page 9-93

“Best Practices for Checking State Activity” on page 9-95

When to Check State Activity
Check state activity when you have sub states in parallel states that can be
active at the same time. For example, checking state activity allows you to
synchronize substates in two parallel states.

How to Check State Activity
Use the in operator to check if a state is active. You can use this operator in
state actions and transitions that originate from states.

The in Operator

Purpose
Checks if a state is active in a given time step during chart execution.

Syntax

in(S)

where S is a fully qualified state.
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Description
The in operator is true and returns a value of 1 whenever state S is active;
otherwise, it returns a value of 0.

Example
This example illustrates the use of the in operator in transition conditions.

In this chart, using the in operator to check state activity synchronizes
substates in the parallel states Place and Tracker . For example, when
the input position u becomes positive, the state transition from Place.L to
Place.R occurs. This transitio n makes the condition [in(Place.R)] true, and
the transition from Tracker.Moved_Left to Tracker.Moved_Right occurs.

How Checking State Activity Works
Checking state activity is a two-stage process. First, the in operator must find
the desired state. Then, the operator determines if the desired state is active.

• The in operator does not perform an exhaustive search for all states in a
chart that can match the argument. It performs a localized search and
stops.
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• The in operator does not stop searching after it finds one match. It
continues to search until it reaches the chart level.

This diagram shows the detailed process of checking state activity.
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When you use the in operator to check state activity, these actions take place:

1 The search begins in the state where you use the in operator.

• If you use the in operator in a state action, then that state is the starting
point.

• If you use the in operator in a transition label, then the parent of the
source state is the starting point.

2 The in operator searches at that level of the hierarchy for a path to a state
that matches the desired state. If the operator finds a match, it adds that
state to the list of possible matches.

3 The operator moves up to the next highest level of the hierarchy. At that
level, the operator searches for a path to a state that matches the desired
state. If the operator finds a match, it adds that state to the list of possible
matches.

4 The in operator repeats the previous step until it reaches the chart level.

5 At the chart level, the operator searches for a path to a state that matches
the desired state. If the operator fin ds a match, it adds that state to the
list of possible matches. Then, the search ends.

6 After the search ends, one of the following occurs:

• If a unique search result is found, the in operator checks if that state is
active and returns a value of 0 or 1.

• If the operator finds no matches or multiple matches for the desired
state, a warning message appears.

State Resolution for Identically Named Substates
For identically named substates in pa rallel superstates, the scope of the in
operator remains local with respect to its chart-level superstate. When the
in operator checks activity of a substate, it does not automatically detect an
identically named substate that re sides in a parallel superstate.

This example shows how the in operator works in a chart with identically
named substates.
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• Superstates A and B have identical substates A1 and A2.

• The condition in(A1.Y) guards the transition from P to Q in the states
A.A2 and B.A2 .

• For the state A.A2 , the condition in(A1.Y) refers to the state A.A1.Y .

• For the state B.A2 , the condition in(A1.Y) refers to the state B.A1.Y .

For the transition condition of A.A2 , the in operator performs these search
actions:

Step Action of the in Operator Finds a Match?

1 Picks A.A2 as the starting point and
searches for the state A.A2.A1.Y

No

2 Moves up t o the next level of the
hierarch y and searches for the state
A.A1.Y

Yes

3 Moves up t o the chart level and
searches for the state A1.Y

No

The search ends, with the single state A.A1.Y found. The in operator checks
if that state is active and returns a value of 0 or 1.
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Localizing the scope of the in operator produces a unique search result. For
example, the in operator of A.A2 does not detect the state B.A1.Y , because the
search algorithm localizes the sco pe of the operator. Similarly, the in operator
of B.A2 detects only the state B.A1.Y and does not detect the state A.A1.Y .

Best Practices for Checking State Activity

Use a Specific Search Path
Be specific when defining the path of the state whose activity you want to
check. See the examples that follow for details.

Example of No States Matching the Argument of the in Operator.

In the state A.B , the during action invokes the in operator. Assume that
you want to check the activity of the state A.B.Other.C.D . The in operator
performs these search actions:

Step Action of the in Operator Finds a Match?

1 Picks A.B as the starting point and
searches for the state A.B.C.D

No
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Step Action of the in Operator Finds a Match?

2 Moves up to the next level of the
hierarchy and searches for the state
A.C.D

No

3 Moves up to the chart level and
searches for the state C.D

No

The search ends, and a warning message appears because no match exists.

To eliminate the warning message, use a more specific path to check state
activity: in(Other.C.D) .

Example of the Wrong State Matching the Argument of the in
Operator.

In the state A.B , the during action invokes the in operator. Assume that
you want to check the activity of the state A.B.Other.Q.R . The in operator
performs these search actions:

Step Action of the in Operator Finds a Match?

1 Picks A.B as the starting point and
searches for the state A.B.Q.R

No
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Step Action of the in Operator Finds a Match?

2 Moves up to the next level of the
hierarchy and searches for the state
A.Q.R

No

3 Moves up to the chart level and
searches for the state Q.R

Yes

The search ends, with the single state Q.R found. The in operator checks if
that state is active and returns a value of 0 or 1.

In this example, the in operator checks the status of the wrong state.
To prevent this error, use a more spec ific path to check state activity:
in(Other.Q.R) .

Use Unique State Names
Use unique names when you name the states in a chart.

Example of Multiple States Matching the Argument of the in
Operator.

In the state A.B , the during action invokes the in operator. Assume that you
want to check the activity of the state A.B.P.Q.R . The in operator performs
these search actions:
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Step Action of the in Operator Finds a Match?

1 Picks A.B as the starting point and
searches for the state A.B.P.Q.R

Yes

2 Moves up to the next level of the
hierarchy and searches for the state
A.P.Q.R

No

3 Moves up to the chart level and
searches for the state P.Q.R

Yes

The search ends, and a warning message appears because multiple matches
exist.

To eliminate the warning message, do one of these corrective actions:

• Rename one of the matching states.

• Use a more specific path to the desired state: in(B.P.Q.R) .

• Enclose the outer state P.Q.R in a box or another state, as shown below.

Adding an enclosure prevents the in operator of state A.B from detecting
that outer state.
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Using Bind Actions to Control Function-Call Subsystems

In this section...

“About Bind Actions” on page 9-99

“Binding a Function-Call Subsy stem to a State” on page 9-99

“Example of How to Bind a Function-Call Subsystem to a State” on page
9-103

“Simulating a Bound Function-Call Subsystem” on page 9-105

“Using Stateflow ® Logic with Binding” on page 9-108

“Avoiding Muxed Trigger Events with Binding” on page 9-112

About Bind Actions
Bind actions in a state bind specified data and events to that state. Events
bound to a state can be broadcast only by the actions in that state or its
children. You can also bind a function-c all event to a state to enable or disable
the function-call subsystem that it tr iggers. The function-call subsystem
enables when the state with the bound event is entered and disables when
that state is exited. This means that the execution of the function-call
subsystem is fully bound to the activity of the state that calls it.

Binding a Function-Call Subsystem to a State
By default, a function-call subsystem is controlled by the Stateflow ® chart in
which the associated function call outp ut event is defined. This association
means that the function-call subsystem is enabled when the chart wakes up
and remains active until the chart is deactivated. To achieve a finer level of
control, you can bind a function-call subsystem to a state within the chart
hierarchy by using a bind action (see “Bind Actions” on page 9-6).

Bind actions can bind function-call out put events to a state. When you create
this type of binding, the function-call subsystem that is called by the event
is also bound to the state. In this situation, the function-call subsystem is
enabled when the state is entered an d disabled when the state is exited.
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When you bind a function-call subsystem to a state, you can fine -tune the
behavior of the subsystem when it is en abled and disabled, as described in
the following sections:

• “Handling Outputs When the Subsy stem is Disabled” on page 9-100

• “Controlling Behavior of States When the Subsystem is Enabled” on page
9-101

Handling Outputs When the Subsystem is Disabled
Although function-call subsystems do not execute while they are disabled,
their output signals are available to other blocks in the model. If a
function-call subsystem is bound to a state, you can hold its outputs at their
values from the previous time step or res et the outputs to their initial values
when the subsystem is disabled. Follow these steps:

1 Double-click the outport block of the subsystem to open its Block
Parameters dialog, as in this example:
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2 Select an option for the field Output when disabled, as follows:

Select: To:

held Maintain most recent output value

reset Reset output to its initial value

3 Click OK to record the settings.

Note Setting Output when disabled is meaningful only when the
function-call subsystem is bound to a state, as described in “Binding a
Function-Call Subsystem to a State” on page 9-99.

Controlling Behavior of State s When the Subsystem is Enabled
If a function-call subsystem is bound to a state, you can hold the subsystem
state variables at their values from the previous time step or reset the state
variables to their initial conditions when the subsystem executes. In this way,
the binding state gains full control of s tate variables for the function-call
subsystem.

Follow these steps:

1 Double-click the trigger port of the s ubsystem to open its Block Parameters
dialog, as in this example:
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2 Select an option for the field States when enabling, as follows:

Select: To:

held Maintain most recent values of the states of the
subsystem that conta ins the trigger port

reset Revert to the initial cond itions of the states of the
subsystem that contains this trigger port

inherit Inherit this setting from the function-call initiator’s
parent subsystem. If the parent of the initiator is the
model root, the inherited setting is held. If the trigger
has multiple initiators, the parents of all initiators
must have the same setting, either all held or all
reset.

3 Click OK to record the settings.
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Note Setting States when enabling is meaningful only when the
function-call subsystem is bound to a state, as described in “Binding a
Function-Call Subsystem to a State” on page 9-99.

Example of How to Bind a Function-Call Subsystem
to a State
The control of a Stateflow state that bin ds a function-call subsystem trigger is
best understood through the creation a nd execution of an example model. In
the following example, a Simulink ® model triggers a function-call subsystem
with a function-call trigger event E bound to state A of a Stateflow chart.

The function-call subsystem contains a trigger port block, an input port, an
output port, and a simple block diag ram. The block diagram increments a
count by 1 each time, using a Unit Delay block to store the count.

The Stateflow chart contains two states, A and B, and connecting transitions,
along with some actions. Notice that event E is bound to state A with
the binding action bind:E . Event E is defined for the Stateflow chart in
the example with a scope of Output to Simulink and a trigger type of
function-call.
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The Block Parameters dialog for the trigger port appears.

Notice that the States when enabling field is set to the default value reset.
This resets the state values for the fu nction-call subsystem to zero when
it is enabled.

Notice also that the Sample time type field is set to the default value
triggered. This value sets the function-call subsystem to execute only when
it is triggered by a calling event while it is enabled.

Setting Sample time type to periodic enables the Sample time field
below it, which defaults to 1. These sett ings force the function-call subsystem
to execute for each time step specified in the Sample time field while it is
enabled. To accomplish this, the state that binds the calling event for the
function-call subsystem must send an event for the time step coinciding with
the specified sampling rate in the Sample time field. States can send events
with entry or during actions at the simulation sample rate. Therefore, for
fixed-step sampling, the sample time you enter in the Sample time field
must be an integer multiple o f the fixed-step size. For variable-step sampling,
there are no limits on what you can enter in the Sample time field.
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Simulating a Bou nd Function-Call Subsystem
To see the control that a state can have over the function-call subsystem
whose trigger ev ent it binds, begin simulating the example model in “Example
of How to Bind a Fu nction-Call Subsystem to a State” on page 9-103. For
the purposes of display, the simulation parameters for this model specify a
fixed-step sol ver with a fixed-step size of 1. Take note of model behavior in the
following step s, which record the simulating Stateflow chart and the output
of the subsyst em.

1 The default tr ansition to state A is taken.

2 State A becomes active as shown.

When state A becomes active, it executes its bind and entry actions.
The binding action, bind:E , binds event E to state A. This enables the
function-call subsystem and resets its state variables to 0.

State A also executes its entry action, en:E , which sends an event E to
trigger the function-call subsystem and e xecute its block diagram. The
block diagram increments a count by 1 each time using a Unit Delay block.
Since the previous content of the Unit Delay block is 0 after the reset, the
starti ng output point is 0 and the current value of 1 is held for the next
call t o the subsystem.
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3 The next update event from the Simulink model tests state A for an
outgoing transition.

The temporal operation on the transition to state B, after(10, tick) ,
allows the transition to be taken only after ten update events are received.
This means that for the second update, the during action of state A, du:E , is
executed, which sends an event to trig ger the function-call subsystem. The
held content of the Unit Delay block, 1, is output to the scope as shown.

The subsystem also adds 1 to the held value to produce the value 2, which
is held by the Unit Delay block for the next triggered execution.

4 The next eight update events repeat step 2, which increment the subsystem
output by 1 each time as shown.
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5 On the 11 th update event, the transition to state B is taken as shown.

This makes state B active. Since the binding state A is no longer active, the
function-call subsystem is disabled, and its output drops to 0.

6 When the next sampling event occu rs, the transition from state B to state A
is taken.

Once again, the binding action, bind: E , enables the function-call
subsystem and resets its output to 0 as shown.
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7 With the next 10 update events, step s 2 through 5 repeat, producing the
following output:

Using Stateflow ® Logic with Binding
You can use Stateflow logic to control function-call subsystems that model
C-like switch , if-else , for , and while statements in Simulink models.
Although you can model switch behavio r in a Stateflow chart, the generated
code approximates the switch logic by using if-else statements.
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For example, the following model demonstrates a Simulink switch statement
with subsystems controlled by bind actions:
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In this model, the Stateflow char t controls three subsystems, S1, S2 , and
S3, through the bind actions for three states, A, B, and C, respectively. In
this example, the value of the case argument c determines the subsystem to
execute. State A becomes active and stays active when c is 0. State B becomes
active and stays active when c is 1. State C becomes active and stays active
when c has any other value.

When state A is active, the event S1 is bound to state A, which enables
subsystem S1. The entry and during actions for A broadcast the event S1
whenever the model is updated for sampling. This means that while A is
active, the subsystem S1 is executed for each sampl e time. The same applies
to subsystem S2 for state B, and to subsystem S3 for state C.

The generated code for this model does not contain switch statements.
Instead, it uses if-else logic, as represented by the following pseudocode:

if (c==0)
if (!in(A))

subsystem S1
else if (c==1)

if(!in(B))
subsystem S2

else
if (!in(C))

subsystem S3

You can modify the previous Statefl ow chart to control a Simulink model
with an if-else statement, as shown.
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In this example, State A becomes active and stays active when the condition
Acon is true. State B becomes active and stays active when the condition Bcon
is true and the condition Acon is false. State C becomes active and stays active
when both conditions Acon and Bcon are false. This creates the following
if-else statement in the Simulink model:

if (Acon)
subsystem S1

elseif (Bcon)
subsystem S2

subsystem S3

Avoiding Muxed Trigger Events with Binding
The simulated example in “Simulating a Bound Function-Call Subsystem”
on page 9-105 shows how binding even ts gives control of a function-call
subsystem to a single state in a Stateflow chart. This control can be
undermined if you allow other events to trigger the function-call subsystem
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through a mux. For example, the following Simulink model defines two
function-call events to trigger a function-call subsystem through a mux:

In the Stateflow chart, E1 is bound to state A, but E2 is not. This means that
state B is free to send the triggering event E2 in its entry action. When you
simulate this model, you receive the following output:
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Notice that broadcasting E2 in state B changes the output, which now rises to
a height of 10 before the binding action in state A resets the data.

Note Binding is not recommended when users provide multiple trigger
events to a function-call subsystem th rough a mux. Muxed trigger events can
interfere with event binding and cause undefined behavior.
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About Continuous-Time Modeling

In this section...

“What Is Continuous-Time Modeling?” on page 10-2

“When To Use Stateflow ® Charts for Continuous-Time Modeling” on page
10-3

“Running Demos of Continuous-Time Modeling ” on page 10-3

What Is Continuous-Time Modeling?
Continuous-time modeling allows you to simulate hybrid systems that use
mode logic — that is, systems that re spond to both continuous and discrete
mode changes. A simple example of this type of hybrid system is a bouncing
ball. The ball moves continuously through the air until it hits the ground, at
which point a mode change — or discontinuity — occurs. As a result, the ball
changes direction and velocity due to a s udden loss of energy. A later exercise
shows you how to model a bouncing ball in continuous-time using a Stateflow ®

chart (see “Modeling a Bouncing Ball in Continuous-Time” on page 10-15).

When you configure Stateflow charts for continuous-time simulation, they
interact with the Simulink ® solver in the same way as other continuous
blocks, as follows:

• Maintain mode in minor time steps.

Stateflow charts do not update mode in minor time steps. This behavior
ensures that outputs computed in a minor time step are based on the state
of the chart during the last major time step.

• Compute the state of the chart at each time step and expose the state
derivative to the Simulink solver.

You can define local continuous variables to hold state information.
Stateflow charts automatically provide programmatic access to the
derivatives of state variables. Continuous solvers in Simulink models use
this data to compute the chart’s continuous states at the current time step,
based on values from the previous time steps and the state derivatives.
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Note For more information on how solvers work, see “Solvers” in the
Simulink User’s Guide documentation.

• Can register zero crossings on state transitions.

Stateflow charts can register a zero- crossings function with a Simulink
model to help determine when a state transition occurs. When the Simulink
solver detects a change of mode, it sea rches forward from the previous major
time step to detect when the zero crossing — or state transition — occurred.

Note For more information about how a Simulink model uses
zero-crossing detection to simulate dis continuities in continuous states, see
“Zero-Crossing Detection” in the Simulink User’s Guide documentation.

When To Use Stateflow ® Charts for Continuous-Time
Modeling
Use Stateflow charts for m odeling hybrid systems with modal behavior — that
is, systems that transition from one m ode to another in response to physical
events and conditions, where each m ode is governed by continuous-time
dynamics.

In Stateflow charts, you can represent m ode logic succinctly and intuitively as
a series of states, transitions, and flo w graphs. You can also easily represent
state information as continuous local variables with automatic access to time
derivatives, as described in “About Con tinuous-Time Variables” on page 10-12.

If your continuous or hybrid system does not contain mode logic, consider
using a Simulink model (see “Modeling a Continuous System” in the Simulink
User’s Guide documentation).

Running Demos of Continuous-Time Modeling
You can run the following demos of continuous-time modeling with
zero-crossing detection:
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Demo Description

Modeling a Recti fier with Zero
Crossings

Rectifier takes a single (scalar) input
and converts it to i ts absolute value.
Illustrates how Stateflow charts
register zero-cro ssing variables
with Simulink models for accurate
detection of mode changes.

Modeling a Bouncing Ball Demonstrates how to model the
dynamics of a bouncing ball by
defining continuous-time state
variables and their derivatives in
Stateflow charts.

To try it yourself, see “Modeling a
Bouncing Ball in Continuous-Time”
on page 10-15.

Modeling Newton’s Cradle Demonstrates how to model elastic
collisions between balls in Newton’s
Cradle, a device that demonstrates
conservation of momentum and
energy. Uses vector assignment to
continuous-time state variables.

Modeling a Clutch Implements the Simulink clutch
demo model purely in a Stateflow
chart. Represents the modal nature
of the clutch using two states, Locked
and Slipping .

Modeling the Opening Shot in Pool Demonstrates how to model
continuous systems that have a large
number of discontinuous events
which rapidly (and unpredictably)
change the dynamics.

To run these continuous-time demos:

1 At the MATLAB ® prompt, type:

demo simulink stateflow
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A list of Stateflow software demos appears in the MATLAB Help Browser.

2 In the Help Navigator pane, click Zero Crossings and Derivatives.

3 In the right pane, click on the demo of i nterest and follow the instructions.
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Workflow for Creating Continuous-Time Charts

Here are the tasks for modeling hybrid systems containing mode logic in
continuous-time using Stateflow ® charts:

Step Task Example in Bouncing Ball
Model

1
Configure the chart to update in
continuous-time.

“Task 1: Configure the Bouncing
Ball Chart for Continuous
Updating” on page 10-16

2
Decide whether to detect zero
crossings.

“Task 2: Decide Whether to
Enable Zero-Crossing Detection
for the Bouncing Ball” on page
10-16

3
Define continuous-time
variables.

“Task 3: Define Continuous-Time
Variables for Position and
Velocity” on page 10-16

4
Choose a solver that supports
continuous states (see “Choosing
a Solver” in the Simulink ® User’s
Guide documentation).

“Task 4: Choose a Solver for the
Bouncing Ball Chart” on page
10-17

5
Add system dynamics. “Task 5: Add Dynamics for a

Free-Falling Ball” on page 10-18

6
Expose continuous states to a
Simulink model.

“Task 6: Expose Ball Position
and Velocity to the Simulink ®

Model” on page 10-20

7
Validate semantics, based
on design considerations for
continuous-time simulation.

“Task 7: Validate Semantics of
Bouncing Ball Chart” on page
10-20

8
Simulate the chart. “Task 8: Simulate Bouncing Ball

Chart” on page 10-21

9
Debug and revise. “Task 9: Check for the Bounce”

on page 10-23
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Configuring a Stateflow ® Chart to Update in
Continuous-Time

Continuous updating is a Stateflow ® chart property. To set this property,
follow these steps:

1 Right-click inside a Stateflow chart and select Properties from the context
menu.

The chart properties dialog box appears.

2 In the chart properties dialog box, set update method to Continuous.
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Note When you set update method to Continuous, the Stateflow chart
automatically:

• Enables zero-crossing detection

• Disables super step semantics
.
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After you select the continuous update method, note that zero-crossing
detection is enabled by default.

3 Decide whether or not to enable ze ro-crossing detection, based on
considerations described in “When to Enable Zero-Crossing Detection” on
page 10-11.

Note You can choose from different zero-crossing detection algorithms in
the Solver pane of the Configuration Para meters dialog box. See “Zero
Crossing Algorithms” in the Simulink ® User’s Guide documentation for
details.

4 Click OK.
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When to Enable Zero-Crossing Detection

Whether or not to enable zero-crossing de tection on state transitions can be a
trade-off between accuracy and perform ance. Generally when detecting zero
crossings, a Simulink ® model accurately simulates mode changes without
unduly reducing step size. Howe ver, for systems that exhibit chattering —
frequent fluctuations between two mode s of continuous operation — enabling
zero-crossing detection may impact si mulation time. Chattering requires a
Simulink model to check for zero crossings in rapid succession, resulting in
excessively small step sizes which can sl ow simulation. In these situations,
you can disable zero-crossing detect ion, choose a different zero-crossing
detection algorithm for your chart, or modify parameters that control
the frequency of zero crossings in yo ur Simulink model. See “Preventing
Excessive Zero Crossings” in the Simulink User’s Guide documentation.
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Defining Continuous-Time Variables

In this section...

“About Continuous-Time Variables” on page 10-12

“Implicit Time Derivatives” on page 10-12

“Rules for Using Continuous-Time Variables” on page 10-12

“How to Define Continuous-Time Variables” on page 10-13

“Exposing Continuous States to a Simulink ® Model” on page 10-14

About Continuous-Time Variables
To compute a continuous state, you must determine its rate of change, or
derivative. You can represe nt this information using local variables that
update in continuous-time. In a Stateflow ® chart, continuous-time variables
are always double type. You cannot change the type, but you can change
the size.

Implicit Time Derivatives
For each continuous variable you define, a Stateflow chart implicitly creates
a variable to represent its time derivat ive. A chart denotes time derivative
variables as variable_name_dot . For example, the time derivative of
continuous variable x is x_dot . You can write to the time derivative variable
in the during action of a state. The time derivative variable does not appear
in the Model Explorer.

Note You should not explicitly define variables with the suffix _dot in a
Stateflow chart.

Rules for Using Continuous-Time Variables
Follow these rules when defining and u sing continuous-time variables:

• Scope must be local .
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• Define continuous-time variables at the chart level or below in the
Stateflow object hierarchy.

• Expose continuous state by assigning the local variable to a Stateflow
output (see “Exposing Continuous States to a Simulink ® Model” on page
10-14).

How to Define Continuous-Time Variables
To define continuous-time var iables, follow these steps:

1 Configure your chart to update in continuous-time, as described in
“Configuring a Stateflow ® Chart to Update in Continuous-Time” on page
10-7.

2 Add local data to your Stateflow chart in the Stateflow Editor or Model
Explorer.

3 In the properties dialog for your local data, set Update Method to
Continuous.
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In this example, the Stateflow chart a utomatically creates the variable
mydata_dot to represent the time de rivative of this data.

Note When you set a variable to update in continuous-time, you cannot
bind that data to a Simulink ® signal.

Exposing Continuous States to a Simulink ® Model
In a Stateflow chart, you represent continuous state using local variables, not
inputs or outputs (see “About Continuous-Time Variables” on page 10-12). To
expose the continuous states to a Simu link model, you must explicitly assign
the local variables to Stateflow outputs in the during action of the state. For
examples, see “Modeling a Bouncing Ball in Continuous-Time” on page 10-15.
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Modeling a Bouncing Ball in Continuous-Time

In this section...

“Try It” on page 10-15

“Dynamics of a Bouncing Ball” on page 10-15

“Modeling the Bouncing Ball” on page 10-16

Try It
The following topics give you step-by -step instructions for modeling a
bouncing ball as a Stateflow ® chart in continuous-time using the workflow
described in “Workflow for Creating C ontinuous-Time Charts” on page 10-6.

Dynamics of a Bouncing Ball
The dynamics of a bouncing ball describes the ball as it falls, when it hits the
ground, and when it bounces back up.

You can specify how the ball falls freely under gravity using the following
second-order differential equation:

��p g= −

In this equation, p describes the position of the b all as a function of time, and

g m s= 9 81 2. / , which is the acceleration due to gravity.

A Stateflow chart requires that you sp ecify system dynamics as first-order
differential equations. You can descri be the dynamics of the free-falling ball
in terms of position p and velocity v using the following first-order differential
equations:

Equation Descripti on

�p v=
Derivativ e of position is velocity

�v = −9 81. Derivativ e of velocity is acceleration
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The bounce occurs after the ball hits the ground at position p <= 0. At this
point in time, you can model the bounce b y updating position and velocity as
follows:

• Reset position to 0

• Reset velocity to the negative of its value just before the ball hit the ground

• Multiply the new velocity by a coefficient of distribution (-0.8) that reduces
the speed just after the bounce

Modeling the Bouncing Ball
The following steps take you through the workflow for modeling a bouncing
ball in continuous-time. To view the completed model, open the bouncing
ball demo.

Task 1: Configure the Bouncing Ball Chart for Continuous
Updating

1 Create an empty Stateflow chart and open its properties dialog box.

If you need instructions, see “Creating a Stateflow ® Chart” on page 4-2.

2 In the General panel of the properties dialog box, set the update method
to Continuous.

Task 2: Decide Whether to Enable Zero-Crossing Detection for
the Bouncing Ball
For this example, enable zero-crossing detection (the default) so that the
Simulink ® model can determine exactly when the ball hits the ground at p <=
0. Otherwise, the Simulink model may not be able to simulate the physics
accurately. For example, the ball may appear to descend below ground.

Task 3: Define Continuous-Time Variables for Position and
Velocity

1 Define two continuou s-time variables, p for position and v for velocity. For
each variable, follow these steps:
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a In the Stateflow Editor, select Add > Data > Local.

b Enter the name for the local data.

c Set the update method to Continuous.

d Leave all other properties at their default values and click OK.

Note For each continuous local variab le that you define, the Stateflow
chart implicitly creates its time derivative as a variable of the same name
with the suffix _dot . In this example, the Stateflow chart defines p_dot
as the derivative of position p and v_dot as the derivative of velocity v.

2 Define two outputs, p_out and v_out for exposing continuous state to the
Simulink model. For each variable, follow these steps:

a In the Stateflow Editor, select Add > Data > Output to Simulink.

b Enter the name for the output data.

c Leave all other properties at their default values and click OK.
Your Stateflow chart should contain the following data (as viewed in the
Model Explorer):

Task 4: Choose a Solver for the Bouncing Ball Chart
For this example, you can use ode4 5 (Dormand-Prince), the default
variable-step solver used by Simul ink models with continuous states.
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Task 5: Add Dynamics for a Free-Falling Ball

1 Add a state called falling with a default transition.

2 In the default transition, set initial position to 10 meters and initial velocity
to 15 meters/second. Use a transition action, as follows.
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3 Add a durin g action to the falling state that defines the derivatives of
position a nd velocity, as follows.

The derivative of position is velocity and the derivative of velocity is
acceleration due to gravity (-g).
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Task 6: Expose Ball Position and Velocity to the Simulink ®

Model
In the during action, assign position to the output p_out and assign velocity
to the output v_out , as follows.

Task 7: Validate Semantics of Bouncing Ball Chart
Check semantics against the requiremen ts defined in “Design Considerations
for Continuous-Time Modeling in Stateflow ® Charts” on page 10-27.

This chart meets design requirements, as follows:

• Assigns values to derivatives p_dot and v_dot in a during action

• Writes to local variables p and v in a transition action

• Initializes local variables on the default transition

• Does not contain events, inner transitions, event-based temporal logic, or
change detection operators
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Task 8: Simulate Bouncing Ball Chart

1 Attach a scope to each output.

2 Simulate the chart and view the output in the scopes.

After autosc aling, the scopes show a patte rn of a free-falling ball.
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Note that the ball appears to fall below the ground (below position p = 0)
because the chart does not yet include a check for the bounce.
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Task 9: Check for the Bounce

1 Add a self-loop transition to state falling .

Note The chart uses a self-loop transition so it can model the bounce as an
instantaneous mode change — where the ball suddenly reverses direction
— rather than as a finite time collision.

2 Add a condition on the transition th at indicates when the ball hits the
ground.

The condition should check for position p <= 0 and velocity v < 0, as follows.
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Why not just check for p == 0?
Physically, the ball hits the ground when position p is exactly zero.
However, by relaxing the condition, you increase the tolerance within which
the Simulink model can detect when the continuous variable changes sign
(see “How Blocks Work with Zero-Crossing Detection” in the Simulink
User’s Guide documentation).

Why add the second check for v < 0?

The second check helps maintain the efficiency of the Simulink solver by
minimizing the frequency of zero cro ssings. Without the second check,
the condition becomes true immediatel y following the sta te transition,
resulting in two succe ssive zero crossings.

3 When the ball hits the ground, reset position and velocity in a condition
action, as follows.
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4 Simulate t he chart again. This time, the scopes illustrate the expected
bounce pattern (after autoscaling).
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Design Considerations for Continuous-Time Modeling in
Stateflow ® Charts

In this section...

“Rationale for Design Considerations” on page 10-27

“Summary of Rules for Continuous-Time Modeling” on page 10-27

Rationale for Design Considerations
To guarantee the integrity — or smoothness — of the results in
continuous-time modeling, you must constrain your charts to a restricted
subset of Stateflow ® chart semantics. The restricted semantics ensure that
inputs do not depend on unpredictable factors — or side effects — such as:

• Simulink ® solver’s guess for number of minor intervals in a major time step

• Number of iterations required to stabilize the integration loop or zero
crossings loop

By minimizing side effects, a Stateflow chart can maintain its state at minor
time steps and, therefore, update state only during major time steps when
mode changes occur. Using this heuristic, a Stateflow chart can always
compute outputs based on a constant state for continuous-time.

A Stateflow chart generates informat ive errors to help yo u correct semantic
violations.

Summary of Rules for Continuous-Time Modeling
Here are the rules for modeling continuous-time Stateflow charts:

Update local data only in transition, entry, and exit actions

To maintain precision in continuous-time simulation, you should update local
data (continuous or discrete) only during physical events at major time steps.

In Stateflow charts, physical events caus e state transitions. Therefore, write
to local data only in actions that execute during transitions, as follows:
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• State exit actions, which execute before leaving the state at the beginning
of the transition

• Transition actions, which execute during the transition

• State entry actions, which execute after e ntering the new state at the
end of the transition

• Condition actions on a transition, but only if the transition directly reaches
a state

Consider this Stateflow chart:

In this example, the action {n++} executes even when conditions c2 and
c3 are false. In this case, n gets updated in a minor time step because
there is no state transition.

Do not write to local continuous data in during actions because these actions
execute in minor time steps.

Compute derivatives only in during actions

A Simulink model reads continuous-time derivatives during minor time steps.
The only part of a Stateflow chart that executes during minor time steps is the
during action. Therefore, you should compute derivatives in during actions
to give your Simulink model the most current calculation.
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Do not read outputs and derivatives in states or transitions

This restriction ensures smooth outputs in a major time step because it
prevents a Stateflow chart from using values that may no longer be valid in
the current minor time step. Instead, a Stateflow chart always computes
outputs from local discrete data, local continuous data, and chart inputs.

Use discrete variables to govern conditions in during actions

This restriction prevents mode chang es from occurring be tween major time
steps. When placed in during actions, conditions that affect control flow
should be governed by discrete variables because they do not change between
major time steps.

Do not use input events in con tinuous-time Stateflow ® charts

The presence of input events makes Sta teflow charts behave like a triggered
subsystem and therefore unable to simulate in continuous-time. For example,
the following model generates an error if the Stateflow chart uses a continuous
update method:

To model the equivalent of an input event, pass the input signal through a Hit
Crossing block as an input to the continuous chart, as in this example:
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Do not use inner transitions

When a mode change occurs during continuous-time simulation, the entry
action of the destination state indic ates to the Simulink model that a state
transition occurred. If inner transitions are taken, the entry action is never
executed.

Limit use of temporal logic

Do not use event-based temporal logic. Use only absolute-time temporal logic
for continuous-time simulation. See “Op erators for Absolute-Time Temporal
Logic” on page 9-64 for details.

Event-based temporal logic has no mea ning because there is no concept of a
tick during a continuous-time simulation.

The chart must have at least one substate

In continuous-time simulation, the during action of a state updates the
outputs. A chart with no state produces no output. To simulate the behavior
of a stateless chart in continuous-ti me, create a single state which calls a
graphical function in its during action.

Do not use change detection operators in continuous charts

To implement change detection, Statefl ow software buffers variables in a way
that affects the behavior of charts between a minor time step and the next
major time step.
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What Is Fixed-Point Data?

In this section...

“Before You Begin” on page 11-2

“Fixed-Point Numbers” on page 11-2

“Fixed-Point Operations” on page 11-3

Before You Begin
Fixed-point numbers use integers and integer arithmetic to approximate real
numbers. They are an efficient means for performing computations involving
real numbers without requiring floating-point support in underlying system
hardware.

See “Tips for Using Fixed-Point Data” on page 11-8.

Fixed-Point Numbers
Fixed-point numbers use integers and integer arithmetic to represent real
numbers and arithmetic with the following encoding scheme:

where

• V is a precise real-world value that you want to approximate with a
fixed-point number.

• is the approximate real-world val ue that results f rom fixed-point
representation.

• Q is an integer that encodes . It is referred to as the quantized integer.

Q is the actual stored integer value use d in representing the fixed-point
number; that is, if a fixed-point number changes, its quantized integer, Q,
changes – S and B remain unchanged.

• S is a coefficient of Q referred to as the slope.

• B is an additive correction referred to as the bias.
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Fixed-point numbers encode real quantities (for example, 15.375) using the
stored integer Q. You set the value of Q by solving the preceding equation

for Q and roundi ng the result to an integer value as follows:

Q = round((V - B)/S)

For example, su ppose you want to represent the number 15.375 in a
fixed-point ty pe with the slope S = 0.5 and the bias B = 0.1. This means that

Q = round((15.375 — 0.1)/0.5) = 30

However, because Q is rounded to an integer, you h ave lost some precision in
representing the number 15.375. If you calculate the number that Q actually
represents, y ou now get a slightly different answer.

Using fixed-point numbers to represen t real numbers with integers involves
the loss of some precision. However, if you choose S and B correctly, you can
minimize this loss to acceptable levels.

Fixed-Point Operations

Now that you can express fixed-point numbers as , you can define
operations between two fixed-point numbers.

The general equation for an operation between fixed-point operands is as
follows:

c = a <op> b

where a, b, and c are all fixed-point numbers, and <op> refers to one of the
binary operations: addition, subtraction, multiplication, or division.

The general form for a fixed-point number x is SxQx + Bx (see “Fixed-Point
Numbers” on page 11-2). Substituting this form for the result and operands
in the preceding equation yields this expression:

(ScQc + Bc) = (SaQa + Ba) <op> (SbQb + Bb)
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The values for Sc and Bc are chosen by Stateflow ® software for each operation
(see “Promotion Rules for Fixed-Poin t Operations” on page 11-18) and are
based on the values for Sa, Sb, Ba and Bb that you enter for each fixed-point
data (see “Specifying Fixed-Point Data” on page 11-6).

Note You can be more precise in choosing the values for Sc and Bc when you
use the := assignment operator (that is, c := a < op> b). See “Assignment (=,
:=) Operations” on page 11-24.

Using the values for Sa, Sb, Sc, Ba, Bb, and Bc, you can solve the preceding
equation for Qc for each binary operation as follows:

• The operation c=a+b implies that

Qc = ((Sa/Sc)Qa + (Sb/Sc)Qb + (Ba + Bb - Bc)/Sc)

• The operation c=a-b implies that

Qc = ((Sa/Sc)Qa - (Sb/Sc)Qb - (Ba - Bb - Bc)/Sc)

• The operation c=a*b implies that

Qc = ((SaSb/Sc)QaQb + (BaSb/Sc)Qa + (BbSa/Sc)Qa + (BaBb - Bc)/Sc)

• The operation c=a/b implies that

Qc = ((SaQa + Ba)/(Sc(SbQb + Bb)) - (Bc/Sc))

The fixed-point approximations of the real number result of the operation c =
a <op> b are given by the preceding solutions for the value Qc. In this way,
all fixed-point operations are perfo rmed using only the stored integer Q for
each fixed-point number and integer operation.
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Using Fixed-Point Data in Stateflow ® Charts

In this section...

“How Stateflow ® Software Defines Fixed-Point Data” on page 11-5

“Specifying Fixed-Point Data” on page 11-6

“Fixed-Point Context-Sensitive Constants” on page 11-7

“Tips for Using Fixed-Point Data” on page 11-8

“Overflow Detection for Fixed-Point Types” on page 11-10

“Sharing Fixed-Point Data with Simulink ® Models” on page 11-10

How Stateflow ® Software Defines Fixed-Point Data
The preceding example in “What Is Fixed-Point Data?” on page 11-2 does
not answer the question of how the values for the slope, S, the quantized
integer, Q, and the bias, B, are implemented as integers. These values are
implemented as follows:

• Stateflow ® software defines a fixed-point data type from values that you
specify.

You specify values for S, B, and the base integer type for Q. The available
base types for Q are the unsigned integer types uint8 , uint16 , and
uint32 , and the signed integer types int8 , int16 , and int32 . For specific
instructions on how to enter fixed-point data, see “Specifying Fixed-Point
Data” on page 11-6.

Notice that if a fixed-point number has a slope S = 1 and a bias B = 0, it
is equivalent to its quantized integer Q, and behaves exactly as its base
integer type.

• Stateflow software implements an integer variable for the Q value of each
fixed-point data in generated code.

This is the only part of a fixed-point number that varies in value. The
quantities S and B are constant and appear only as literal numbers or
expressions in generated code.

• The slope, S, is factored into an i nteger power of two, E, and a coefficient,
F, such that S = F*2 E and 1 ≤ F< 2.
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The powers of 2 are implemented as bit shifts, which are more efficient
than multiply instructions. Setting F = 1 avoids the computationally
expensive multiply instructions for values of F > 1. This binary-point-only
scaling is implemented with bit shifts only and is recommended.

• Operations for fixed-point types are implemented with solutions for the
quantized integer as described in “Fi xed-Point Operations” on page 11-3.

To generate efficient code, the fixed -point promotion rules choose values
for Sc and Bc that conveniently cancel out dif ficult terms in the solutions.
See “Addition (+) and Subtraction (-)” on page 11-22 and “Multiplication
(*) and Division (/)” on page 11-22.

You can use a special assignment oper ator (:=) and context-sensitive
constants to maintain as much precision as possible in your fixed-point
operations. See “Assignment (=, :=) Operations” on page 11-24 and
“Fixed-Point Context-Sensitive Constants” on page 11-7.

• Any remaining numbers, such as the fractional slope, F, that cannot be
expressed as a pure integer or a power of 2, are converted into fixed-point
numbers.

These remaining numbers can be computationally expensive in
multiplication and division operations. Therefore, using binary-point-only
scaling in which F = 1 and B = 0 is recommended.

• Simulation can detect when the result of a fixed-point operation overflows
the capacity of its fixed-point type. Se e “Overflow Detection for Fixed-Point
Types” on page 11-10.

Specifying Fixed-Point Data
You can specify fixed-point data in Stateflow charts as follows:

1 From the Stateflow Editor, select Add > Data, and then select the scope
for the new data object. (See “Scope” on page 8-8 for a description of each
type of scope.)

Doing so adds a default definition of the new data object to the Stateflow
hierarchy, and the Data properties dialog appears.

2 Click the Show data type assistant button to display the Data
Type Assistant.
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3 In the Mode field of the Data Type Assistant, select Fixed point .

4 Specify the fixed-point data propert ies as described in “Fixed-Point Data
Properties” on page 7-14.

5 Specify the name, size, and other properties for the new data object as
described in “Setting Data Properti es in the Data Dialog” on page 7-7.

Note You can also specify a fixed-point constant indirectly in action
language by using a fixed-point context -sensitive constant. See “Fixed-Point
Context-Sensitive Constants” on page 11-7.

Fixed-Point Context-Sensitive Constants
You can use fixed-point constants without using the Data properties dialog
or Model Explorer, by using context-s ensitive constants. These constants
infer their types from the context in which they occur. They are written like
ordinary constants, but have the suffix C or c. For example, the numbers 4.3C
and 123.4c are valid fixed-point context-sensitive constants you can use in
action language operations.

These rules apply to context-sensitive constants:

• If any type in the context is a double, then the context-sensitive constant is
cast to type double.

• In an addition or subtraction operati on, the type of the context-sensitive
constant is the type of the other operand.

• In a multiplication or division opera tion with a fixed-point number, they
obtain the best possible preci sion for a fixed-point result.

The Simulink ® Fixed Point™ function fixptbestexp provides this
functionality.

• In a cast, the context is the type to which the constant is being cast.

• As an argument in a function call, the context is the type of the formal
argument. In an assignment, the context is the type of the left-hand
operand.
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• You cannot use context-sensitive c onstants on the left-hand side of an
assignment.

• You cannot use context-sensitive constants as both operands of a binary
operation.

While you can use fixed-point context -sensitive constants in context with
any types (for example, int32 or double ), their main use is with fixed-point
numbers. The algorithm that computes the type to assign to a fixed-point
context-sensitive constant depends on the operator, the types in the context,
and the value of the constant. It provides a "natural" type, providing
maximum accuracy without overflow.

Tips for Using Fixed-Point Data
When you use fixed-point numbe rs, follow these guidelines:

1 Develop and test your application u sing double- or single-precision
floating-point numbers.

Using double- or single-precision fl oating-point numbers does not limit
the range or precision of your compu tations. You need this while you are
building your application.

2 Once your application works well, sta rt substituting fixed-point data for
double-precision data during th e simulation phase, as follows:

a Set the integer word size for the simulation environment to the integer
size of the intended target environment.

Stateflow generated code uses this in teger size to select result types for
your fixed-point operations. See “ Setting the Integer Word Size for a
Target” on page 11-19.

b Add the suffix ’C’ to literal numeric constants.

This suffix casts a literal numeric constant in the type of its context.
For example, if x is fixed-point data, the expression y = x/3.2C first
converts the numerical constant 3.2 to the fixed-point type of x and
then performs the division with a fixe d-point result. See “Fixed-Point
Context-Sensitive Constants” on page 11-7 for more information.
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Note If you do not use context-sensitive constants with fixed-point
types, noninteger numeric constants (for example, constants that have a
decimal point) can force fixed-point o perations to produ ce floating-point
results.

3 When you simulate, use overflow detection.

See “Overflow Detection for Fixed-Point Types” on page 11-10 for
instructions on how to set overflow detection in simulation.

4 If you encounter overflow errors in fixed-point data, you can do one of the
following to add range to your data.

• Increase the number of bits in the overflowing fixed-point data.

For example, change the base type for Q from int16 to int32 .

• Increase the range of your fixed-poi nt data by increasing the power of
2 value, E.

For example, you can increase E from -2 to -1. This action decreases the
available precision in your fixed-point data.

5 If you encounter problems with model behavior stemming from inadequate
precision in your fixed-point data, you can do one of the following to add
precision to your data:

• Increase the precision of your fixed -point data by decreasing the value
of the power of 2 binary point E.

For example, you can decrease E from -2 to -3. This action decreases the
available range in your fixed-point data.

• If you decrease the value of E, you can prevent overflow by increasing
the number of bits in t he base data type for Q.

For example, you can change the base type for Q from int16 to int32 .

6 If you cannot avoid overflow for lack of precision, try using the :=
assignment operator in place of the = operator for assigning the results of
multiplication and division operations.
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You can use the := operator to increase t he range and precision of the result
of fixed-point multiplication and di vision operations at the expense of
computational efficiency. See “Assignment Operator :=” on page 11-24.

Overflow Detection for Fixed-Point Types
Overflow occurs when the magnitude of a result assigned to a data exceeds
the numeric capacity of that data. You can detect overflow of integer and
fixed-point operations during simulation with these steps:

1 In the Stateflow Editor, select Tools > Open Simulation Target.

The Simulation Target dialog appears.

2 Select both the Enable debugging/animation and Enable overflow
detection (for debugging) options in the General pane.

For descriptions of these options, see “Configuring the Simulation Target
for the Main Model” on page 18-15.

3 In the Simulation Target dialog, select Execute to build the simulation
target.

4 In the Stateflow Editor toolbar, select Debug to open the Debugging
window.

5 In the Debugging window, select Data Range.

See “Setting Error Checking in the De bugging Window” on page 19-11 for
a description of this option.

6 In the Debugging window, select Start to begin simulating the model.

Simulation breaks execution when an overflow occurs.

Sharing Fixed-Point Data with Simulink ® Models
To share fixed-point data with Simulink ® models, use one of these methods:

• Define identically in both Stateflow charts and Simulink models the data
that you input from or output to Simulink blocks.
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The values that you enter for the Stored Integer and Scaling fields in
the shared data’s properties dialog i n a Stateflow chart (see “Specifying
Fixed-Point Data” on page 11-6) must match similar fields that you enter
for fixed-point data in a Simulink m odel. See “Fixed-Point "Bang-Bang
Control" Example” on page 11-12 for an example of this method of sharing
input data from a Simulink model using a Gateway In block.

For some Simulink blocks, you can specify the type of input or output data
directly. For example, you can set fix ed-point output data directly in the
Block Parameters dialog of the Simulink Constant block when you select
Specify via dialog for the Output data type mode field (under Show
additional parameters).

• Define the data as Input or Output in the Data properties dialog in the
Stateflow chart and instruct the sending or receiving block in the Simulink
model to inherit its type from the chart data.

Many blocks allow you to set their data types and scaling through
inheritance from the driving block, or through back propagation from the
next block. You can set the data type of a Simulink block to match the data
type of the Stateflow port to which it connects.

For example, you can set the Simulink Constant block to inherit its type
from the Stateflow Input to Simulink port that it supplies by selecting
Inherit via back propagation for the Output data type mode field in
its Block Paramete rs dialog (under Show additional parameters).
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Fixed-Point "Bang-Bang Control" Example

In this section...

“Opening the Fixed-Point "Bang-Bang Control" Example” on page 11-12

“Exploring the Fixed-Point "Bang-Bang Control" Example” on page 11-13

Opening the Fixed-Point "Bang-Bang Control"
Example
Stateflow ® software includes demo models wi th applications of fixed-point
data. For this example, load the dem o model ("Bang-Bang Control Using
Temporal Logic") by typing sf_boiler at the MATLAB ® command prompt.

The model appears as shown.

The Stateflow block performs almost a ll the logic of the bang-bang boiler
model, except for the Boiler Plant model subsystem block.

11-12



Fixed-Point "Bang-Bang Control" Example

Exploring the Fi xed-Point "Bang-Bang Control"
Example
To explore the mo del, follow these steps:

1 In the Simulink ® model window, double-click the Boiler Plant model
subsystem block.

The subsystem appears.

The Boiler Plant model subsystem simulates the temperature reaction of
the boiler to periods of heating or cooling dictated by the Stateflow block.
Depending on the Boolean value coming from the Controller, a temperature
increment (+1 for heating, -0.1 for cooling) is added to the previous boiler
temperature. The resulting boiler temperature is sent to the digital
thermometer subsystem block.

2 In the Boiler Plant model subsystem, double-click the digital thermometer
subsystem block.

The subsystem appears.

The digital thermometer subsystem produces an 8-bit fixed-point
representation of the input temperature with the blocks described in the
sections that follow.
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sensor Block
The sensor block converts input boiler temperature (T) to an intermediate
analog voltage output V with a first-order polynomi al that gives this output:

V = 0.05* T + 0.75

ADC Block
Double-click the ADC block to reveal these contents:

The ADC subsys tem digitizes the analog vol tage from the sensor block by
multiplying the analog voltage by 256/5, round ing it to its integer floor, and
limiting it t o a maximum of 255 (the largest unsigned 8-bit integer value).
Using the val ue for the output V from the sensor block, the new digital coded
temperature output by the ADC block, Tdigital, is given by this equation:

Tdigital = (256/5)*V = (256*0.05/5)* T+(256/5)*0.75

Linear fixed point conversion Block
The Linear f ixed point conversion block informs the rest of the model that
Tdigital is a fixed-point number with a slope value of 5/256/0.05 and an intercept
value of -0.75/0.05. The Stateflow block Bang-Bang Controller receives this
output and i nterprets it as a fixed-point num ber through the Stateflow data
temp , whic h is scoped as Input from Simulink and set as an unsigned 8-bit
fixed-poi nt data with the same values for S and B set in the Linear fixed
point conv ersion block.

The values for S and B are determined from the general expression for a
fixed-point number:

V = S*Q + B

Therefor e,
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Q = (V - B)/S = (1/S)*V + (-1/S)*B

Since Tdigital is now a fixed-point number, it is now the quantized integer Q of
a fixed-point type. This means that Tdigital = Q of its fixed-point type, which
gives this relation:

(1/S)*V + (-1/S)*B = (256*0.05/5)* T + (256/5)*0.75

Since T is the real-world value for the envi ronment temperature, the above
equation implies these relations:

V = T

and

1/S = (256*0.05)/5

S = 5/(256*0.05) = 0.390625

and

(-1/S)*B = (256/5)*0.75

B = -(256/5)*0.75*5/(256*0.05) = -0.75/0.05 = 15

By setting Tdigital to be a fixed-point data as the output of the Linear fixed point
conversion block and the input of the Stateflow block Bang-Bang Controller,
the Stateflow chart interprets and processes this data automatically in an
8-bit environment with no need for any explicit conversions.
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Operations with Fixed-Point Data

In this section...

“Supported Operations with Fixed-Point Operands” on page 11-16

“Promotion Rules for Fixed-Point Operations” on page 11-18

“Assignment (=, :=) Operations” on page 11-24

“Fixed-Point Co nversion Operations” on page 11-29

“Autoscaling of Stateflow ® Fixed-Point Data” on page 11-30

Supported Operations with Fixed-Point Operands

Binary Operati ons
These binary operations work with fixed-point operands in the following order
of precedence (1 = highest, 8 = lowest). For operations with equal precedence,
they evaluate in order from left to right:

Example Precedence Description

a * b 1 Multiplicati on

a / b 1 Division

a + b 2 Addition

a - b 2 Subtraction

a > b 3 Comparison, greater than

a < b 3 Comparison, less than

a >= b 3 Comparison, greater than or equal to

a <= b 3 Comparison, less than or equal to

a == b 4 Comparison, equality

a ~= b 4 Comparison, inequality

a != b 4 Comparison, inequality

a <> b 4 Comparison, inequality
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Example Precedence Description

a & b 5 One of the following:

• Bitwise AND

Enabled when Enable C-bit operations is
selected in the Chart properties dialog. See
“Specifying Chart Properties” on page 13-6.
Operands are cast to integers before the
operation is performed.

• Logical AND

Enabled when Enable C-bit operations is
cleared in the Chart properties dialog.

a | b 6 One of the following:

• Bitwise OR

Enabled when Enable C-bit operations is
selected in the Chart properties dialog. See
“Specifying Chart Properties” on page 13-6.
Operands are cast to integers before the
operation is performed.

• Logical OR

Enabled when Enable C-bit operations is
cleared in the Chart properties dialog.

a && b 7 Logical AND

a || b 8 Logical OR

Unary Operations and Actions
These unary operations and actions work with fixed-point operands:

Example Description

~a Unary minus
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Example Description

!a Logical NOT

a++ Increment

a-- Decrement

Assignment Operations
These assignment operations work with fixed-point operands:

Example Description

a = expression Simple assignment

a := expression See “Assignment Operator :=” on page 11-24.

a += expression Equivalent to a = a + expression

a -= expression Equivalent to a = a - expression

a *= expression Equivalent to a = a * expression

a /= expression Equivalent to a = a / expression

a |= expression Equivalent to a = a | expression (bit
operation). See operation a | b in “Binary
Operations” on page 11-16.

a &= expression Equivalent to a = a & expression (bit
operation). See operation a & b in “Binary
Operations” on page 11-16.

Promotion Rules for Fixed-Point Operations
Operations with at least one fixed-poin t operand require rules for selecting
the type of the intermediate result for that operation. For example, in
the action statement c = a + b , where a or b is a fixed-point number, an
intermediate result type for a + b must first be chosen before the result is
calculated and assigned to c.

The rules for selecting the numeric types used to hold the results of operations
with a fixed-point number are called fixed-point promotion rules. The goal of
these rules is to maintain computational efficiency and usability.
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Note You can use the := assignment operator to override the fixed-point
promotion rules and obtain greater accu racy. However, in this case, greater
accuracy can require more computatio nal steps. See “Assignment Operator
:=” on page 11-24.

The following topics describe the proce ss of selecting an intermediate result
type for binary operations with at least one fixed-point operand.

Default Selection of the Number of Bits of the Result Type
A fixed-point number with S = 1 and B = 0 is treated as an integer. In
operations with integers, the C langu age promotes any integer input with
fewer bits than the type int to the type int and then performs the operation.

The type int is the integer word size for C on a given platform. Result word
size is increased to the integer word size because processors can perform
operations at this size efficiently.

To maintain consistency with the C language, this default rule applies
to assigning the number of bits for th e result type of an operation with
fixed-point numbers:

When both operands are fixed-point nu mbers, the number of bits in the result
type is the maximum number of bits in the input types or the number of bits
in the integer word size for the target machine, whichever is larger.

Note The preceding rule is a default rule fo r selecting the bit size of the result
for operations with fixed-point numbers. This rule is overruled for specific
operations as described in the sections that follow.

Setting the Integer Word Size for a Target. The preceding default rule
for selecting the bit size of the result f or operations with fixed-point numbers
relies on the definition of the integer word size for your target. You can set
the integer word size for the targets that you build in Simulink ® models with
these steps:
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1 Right-click inside the root Simulink model and select Configuration
Parameters.

The Configuration Parameters dialog opens.

2 Select Hardware Implementation in the left navigation panel.

The right panel displays configurati on parameters for embedded hardware
(simulation and code generation) and emulation hardware (code generation
only).

3 To set integer word size for embedded hardware, follow these steps:

• In the drop-down menu for the Device type field, select Custom.

• In the int field, enter a word size in bits.

4 To set integer word size for emulation hardware, follow these steps:

• If no configuration fie lds appear, uncheck None.

• In the drop-down menu for the Device type field, select Custom.

• In the int field, enter a word size in bits.

5 Click OK to accept the changes.

When you build any target after making this change, the generated code uses
this integer size to select result typ es for your fixed-point operations.

Note It is recommended that you set all the available sizes because they
affect code generation, although they d o not affect the implementation of the
fixed-point promotion ru les in generated code.

Unary Promotions
Only the unary minus (-) operation requ ires a promotion of its result type.
The word size of the result is given by the default procedure for selecting the
bit size of the result type for an operation involving fixed-point data. See
“Default Selection of the Number of Bits of the Result Type” on page 11-19.
The bias, B, of the result type is the negative of the bias of the operand.
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Binary Operation Promotion for Integer Operand with
Fixed-Point Operand
Integers as operands in binary operations with fixed-point numbers are
treated as fixed-point numbers of the same word size with slope, S, equal to
1, and a bias, B, equal to 0. The operation now becomes a binary operation
between two fixed-point operands. Se e “Binary Operation Promotion for Two
Fixed-Point Operands” on page 11-21.

Binary Operation Promotion for Double Operand with
Fixed-Point Operand
When one operand is of type double in a binary operation with a fixed-point
type, the result type is double . In this case, the fixed-point operand is cast to
type double , and the operation is performed.

Binary Operation Promotion for Single Operand with
Fixed-Point Operand
When one operand is of type single in a binary operation with a fixed-point
type, the result type is single . In this case, the fixed-point operand is cast to
type single , and the operation is performed.

Binary Operation Promotion for Two Fixed-Point Operands
Operations with both operands of fixe d-point type produce an intermediate
result of fixed-point type. The resulti ng fixed-point type is chosen through
the application of a set of operator-speci fic rules. The procedure for producing
an intermediate result type from an operation with operands of different
fixed-point types is summarized in these topics:

• “Addition (+) and Subtraction (-)” on page 11-22

• “Multiplication (*) and Division (/)” on page 11-22

• “Relational Operations (>, <, >=, <=, ==, -=, !=, <>)” on page 11-22

• “Logical Operations (&, |, &&, ||)” on page 11-23
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Addition (+) and Subtraction (-). The output type for addition and
subtraction is chosen so that the maximum positive range of either input can
be represented in the output while preserving maximum precision. The base
word type of the output follows the rul e in “Default Selection of the Number
of Bits of the Result Type” on page 11-19. To simplify calculations and yield
efficient code, the biases of the two inputs are added for an addition operation
and subtracted for a sub traction operation.

Note Mixing signed and unsigned operands can yield unexpected results and
is not recommended.

Multiplication (*) and Division (/). The output type for multiplication
and division is chosen to yield the most efficient code implementation. You
cannot use nonzero biases for multiplication and division in Stateflow ® charts
(see note).

The slope for the result type of the product of the multiplication of two
fixed-point numbers is the product of the slopes of the operands. Similarly,
the slope of the result type of the quotient of the division of two fixed-point
numbers is the quotient of the slopes. The base word type is chosen to conform
to the rule in “Default Selection of th e Number of Bits of the Result Type” on
page 11-19.

Note Because nonzero biases are computationally very expensive, they are
not supported for multiplication and division.

Relational Operations (>, <, >=, <=, ==, -=, !=, <>). You can use the
following relational (comparison) operations on all fixed-point types: >, <, >=,
<=, ==, -=, !=, <>. See “Supported Operati ons with Fixed-Point Operands” on
page 11-16 for an example and description of these operations. Both operands
in a comparison must have equal biases (see note).

Comparing fixed-point values of differ ent types can yield unexpected results
because each operand must convert to a common type for comparison. Because
of rounding or overflow erro rs during the conversion, values that do not appear
equal might be equal and values that appear to be equal might not be equal.
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Note To preserve precision and minimize unexpected results, both operands
in a comparison operation must have equal biases.

For example, compare these two unsigned 8-bit fixed-point numbers, a and b,
in an 8-bit target environment:

Fixed-Point Number a Fixed-Point Number b

Sa = 2-4 Sb = 2-2

Ba = 0 Bb = 0

Va = 43.8125 Vb = 43.75

Qa = 701 Qb = 175

By rule, the result type for com parison is 8-bit. Converting b, the least precise
operand, to the type of a, the most precis e operand, could result in overflow.
Consequently, a is converted to the type of b. Because the bias values for both
operands are 0, the conversion occurs as follows:

Sb (newQa) = SaQa

newQa = (SaSb) Qa = (2-4/2-2) 701 = 701/4 = 175

Although they represent different values, a and b are considered equal as
fixed-point numbers.

Logical Operations (&, |, &&, ||). If a is a fixed-point number used in
a logical operation, it is interprete d with the equivalent substitution a !=
0.0C where 0.0C is an expression for zero in the fixed-point type of a (see
“Fixed-Point Context-Sensitive Con stants” on page 11-7). For example, if
a is a fixed-point number in the logical operation a && b, this operation is
equivalent to the following:

(a != 0.0C) && b

The preceding operation is not a check to see whether the quantized integer
for a, Qa, is not 0. If the real-world value for a fixed-point number a is 0,

11-23



11 Using Fixed-Point Data in Stateflow® Charts

this implies that Va = SaQa + Ba = 0.0. Therefore, the expression a != 0 , for
fixed-point number a, is equivalent to this expression:

Qa ! = -Ba / Sa

For example, if a fixed-point number, a, has a slope of 2-2, and a bias of 5, the
test a != 0 is equivalent to the test if Qa ! = -20.

Assignment (=, :=) Operations
You can use the assignment operations LHS = RHSand LHS := RHS between a
left-hand side ( LHS) and a right-hand side ( RHS). See the following topics:

• “Assignment Operator =” on page 11-24.

• “Assignment Operator :=” on page 11-24

• “:= Multiplication Example” on page 11-25

• “:= Division Example” on page 11-27

• “:= Assignment and Context-Sensitive Constants” on page 11-28

Assignment Operator =
An assignment statement of the type LHS = RHS is equivalent to casting the
right-hand side to the type of the left-hand side. You can use any assignment
between fixed-point types and th erefore, implicitly, any cast.

A cast converts the stored integer Q from its original fixed-point type while
preserving its value as accurately as possible using the online conversions
(see “Fixed-Point Conversion Operat ions” on page 11-29). Assignments are
most efficient when both types have the same bias, and slopes that are equal
or both powers of 2.

Assignment Operator :=
Ordinarily, the fixed-point promotion rules determine the result type for an
operation. Using the := assignment operator overrides this behavior by using
the type of the LHS as the result type of the RHSoperation.
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You can use this type of assignment to retain useful range and precision in
the result of a multiplication or divisi on that ordinary assignment might not
retain. This type of assignment is less useful with addition or subtraction but
can avoid overflow or the loss of memory to store a result even in these cases.

These rules govern the use of the := assignment operator:

• The RHScan contain at most one binary operator.

• If the RHScontains anything other than a multiplication (*), division
(/), addition (+), or subtraction (-) operation, or a constant, then the :=
assignment behaves exactly like regular assignment (=).

• Constants on the RHSof an LHS := RHS assignment are converted to
the type of the left-hand side using offline conversion (see “Fixed-Point
Conversion Operations” on page 11-29). Ordinary assignment always casts
the RHSusing online conversions.

For examples contrasting the LHS := RHS and the LHS = RHSassignment
operations, see the following:

• “:= Multiplication Example” on page 11-25

• “:= Division Example” on page 11-27

Caution Using the := assignment operator to produce a more accurate
result can generate code that is less efficient than the code you generate
using the normal fixed-point promotion rules.

:= Multiplication Example
The following example contrasts the := and = assignment operators for
multiplication. Here, the := operator i s used to avoid overflow in the results
of the multiplication c = a * b, where a and b are two fixed-point operands.
The operands and result for this operation are 16-bit unsigned integers with
these assignments:
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Fixed-Point Number
a

Fixed-Point Number
b

Fixed-Point Number
c

Sa = 2-4 Sb = 2-4 Sc = 2-5

Ba = 0 Bb = 0 Bc = 0

Va = 20.1875 Vb = 15.3125 Vc = ?

Qa = 323 Qb = 245 Qc = ?

where S is the slope, B is the bias, V is the real-world value, and Q is the
quantized integer.

c = a*b. In this case, first calculate an intermediate result for a*b in the
fixed-point type given by the rules in the section “Fixed-Point Operations” on
page 11-3, and then cast th at result into the type for c.

The intermediate value is calculated as follows:

Qiv = QaQb

Because the maximum value of a 16-bit unsigned integer is 2 16 - 1 = 65535,
the preceding result overflows its word size. An operation that overflows its
type produces an undefined result.

You can capture overflow errors like the p receding example during simulation
with the Debugger window. See “Overfl ow Detection for Fixed-Point Types”
on page 11-10.

c := a*b. In this case, calculate a*b directly in the type of c. Use the solution
for Qc given in “Fixed-Point Operations” on page 11-3 with the requirement of
zero bias, which is as follows:

Qc = ((SaSb/Sc)QaQb)

= 79135/8 = 9892 (rounded to floor)
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No overflow occurs in this case, and th e approximate real-world value is as
follows:

This value is ve ry close to the actual real-world result of 309.121.

:= Division Example
The following e xample contrasts the := and = assignment operators for
division. The : = operator is used to obtain more p recise results for the division
of two fixed-p oint operands, b and c, in the statement c := a/b .

This example u ses the following fixed-point numbers, where S is the slope, B
is the bias, V is the real-world value, and Q is the quantized integer:

Fixed-Point Number
a

Fixed-Point Number
b

Fixed-Point Number
c

Sa
-4 = 2 Sb

-3 = 2 Sc
-6 = 2

Ba = 0 Bb = 0 Bc = 0

Va = 2 Vb = 3 Vc = ?

Qa = 32 Qb = 24 Qc = ?

c = a/b. In this case, first calculate an intermediate result for a/b in the
fixed-point type given by the rules in the section “Fixed-Point Operations” on
page 11-3, and then cast th at result into the type for c.

The intermediate value is calculated as follows:

Qiv = Qa/Qb

= 32/24 = 1

The intermediate value is th en cast to the result type for c as follows:

SbQc = SivQiv
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Qc = (Siv/Sc)Qiv

The slope of the intermediate value for a division operation is calculated as

Siv = Sa/Sb = 2-4-3/2 = 2-1

Substitution of this value into the prec eding result yields the final result.

Qc = 2-1/2-6 = 25 = 32

In this case, the approximate real-world value is , which is
not a very good approximation of the actual result, .

c := a/b. In this case, calculate a/b directly in the type of c. Use the solution
for Qc given in “Fixed-Point Operations” on page 11-3 with the simplification
of zero bias, which is as follows:

Qc = (SaQa) / (Sc(SbQb))

In this case, the approximate real-world value = 42/64 = 0.6563, a much
better approximation to the p recise result, 2/3 = 0.667.

:= Assignme nt and Context-Sensitive Constants
In a := assignment operation, the type of the left-hand side ( LHS) determines
part of the context used for inferring the type of a right-hand side ( RHS)
context-sensitive constant.

These rules apply to RHScontext-sensitive constants in assignments with
the := operator:

• If the LHS is a floating-point data (type double or single ) , the RHS
context-sensitive constant becomes a floating-point constant.
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• For addition and subtraction, the type of the LHS determines the type of
the context-sensitive constant on the RHS.

• For multiplication and division, the type of the context-sensitive constant is
chosen independently of the LHS.

Fixed-Point Conversion Operations
Real numbers are converted into fixed-p oint data during data initialization
and as part of casting operations in th e application. These conversions
compute a quantized integer, Q, from a real number input. Offline conversions
initialize data, and online conversions perform casting operations in the
running application. The topics that follow describe each conversion type and
give examples of the results.

Offline Conversions for Initialized Data
Offline conversions are performed duri ng code generation and are designed to
maximize accuracy. These conversions round the resulting quantized integer
to its nearest integer value. If the conversion overflows, the result saturates
the value for Q.

Offline conversions are perfo rmed for these operations:

• Initialization of data (both variabl es and constants) in the Stateflow
hierarchy

• Initialization of constants or variables from the MATLAB ® workspace

Online Conversions for Casting Operations
Online conversions are performed for casting operations that take place
during execution of the application. Designed to maximize computational
efficiency, they are faster and more effic ient than offline conversions, but less
precise. Instead of rounding Q to its nearest integer, online conversions round
to the floor (with the exception of div ision, which can round to 0, depending
on the C compiler you have). If the conversion overflows the type to which
you convert, the result is undefined.
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Offline and Online Conversion Examples
The following examples show the difference in the results of offline and online
conversions of real numbers to a fixed-point type defined by a 16-bit word size,
a slope (S) equal to 2 -4, and a bias (B) equal to 0:

Offline
Conversion

Online
Conversion

V V/S Q Q

3.45 55.2 55 3.4375 55 3.4375

1.0375 16.6 17 1.0625 16 1

2.06 32.96 33 2.0625 32 2

In the preceding example,

• V is the real-world value represented as a fixed-point value.

• V/S is the floating-point computa tion for the quantized integer Q.

• Q is the rounded value of V/S.

• is the approximate real-world value resulting from Q for each conversion.

Autoscaling of Stateflow ® Fixed-Point Data
The Simulink autoscaling tool autosc ales Stateflow fixed-point data. See
“Automatic Scaling” in the Simulink ® Fixed Point™ software documentation
for instructions on autoscaling fixed-point data.

You can prevent Stateflow fixed-point d ata from being autoscaled by selecting
the Lock output scaling against changes by the autoscaling tool check
box in the Data properties dialog for fix ed-point data. Selecting this option
prevents the current fixed-point typ e from being replaced with a Simulink
chosen type in the autoscaling tool. See “Setting Data Properties in the Data
Dialog” on page 7-7 for a description of the properties for data.
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How Complex Data Works in Stateflow ® Charts

In this section...

“What Is Complex Data?” on page 12-2

“When to Use Complex Data” on page 12-2

“Where You Can Use Complex Data” on page 12-3

“How You Can Use Complex Data” on page 12-3

What Is Complex Data?
Complex data is data whose value is a complex number. For example, an
input signal with the value 3 + 5i is complex. See “Complex Signals” in the
Simulink ® documentation for details.

When to Use Complex Data
Use complex data when you model appl ications in communication systems
and digital signal processing. For example, you can use this design pattern to
model a frame synchronization algo rithm in a communication system:

1 Use Simulink blocks (such as filters) to process complex signals.

2 Use Stateflow ® charts to implement mode logic for frame synchronization.

3 Let the charts access complex input and output data so that nested
Embedded MATLAB™ functions can drive the mode logic.

For an example of modeling a frame synchronization algorithm, see
“Implementing a Frame Synchronization Controller Using a Stateflow ®

Chart” on page 12-17.

Note Continuous-time variables of complex type are not supported. For more
information, see “Defining Continuous-Time Variables” on page 10-12.
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Where You Can Use Complex Data
You can define complex data at these levels of the Stateflow hierarchy:

• Charts

• Subcharts

• States

How You Can Use Co mplex Data
You can use complex data to define:

• Complex vectors

• Complex matrice s

You can also use complex data as arguments for:

• State actions

• Transition acti ons

• Embedded MATLAB functions

• Truth table func tions

• Graphical funct ions

Note Exported gr aphical functions do not support complex data as
arguments.

• Change detectio n operators

For more informa tion, see “Operations on Complex Data in Stateflow ® Action
Language” on pa ge 12-6 and “Rules for Using Complex Data in Stateflow ®

Charts” on page 12-11.
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How to Define Complex Data

Define complex data in a Stateflow ® chart as follows:

1 In the Stateflow Editor, select Add > Data, and then select the scope for
the new data object.

A default definition of the new data object appears in the Stateflow
hierarchy, and the Data properties dialog appears.

Note Complex data does not support the scopes Constant and Data
Store Memory .

2 In the Complexity field of the Data properties dialog, select On.
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3 Specify the name, size, base type, and other properties for the new data
object as described in “Se tting Data Properties in the Data Dialog” on page
7-7.

Note Complex data does not support the base types ml , struct , and
boolean . See “Built-In Data Types” on page 7-47 for more information.

4 Click Apply.
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Operations on Complex Data in Stateflow ® Action
Language

In this section...

“Binary Operations” on page 12-6

“Unary Operations and Actions” on page 12-6

“Assignment Operations” on page 12-7

Binary Operations
These binary operations work with compl ex operands in the following order of
precedence (1 = highest, 3 = lowest). For operations with equal precedence,
they evaluate in order from left to right.

Example Precedence Description

a * b 1 Multiplication

a + b 2 Addition

a - b 2 Subtraction

a == b 3 Comparison, equality

a != b 3 Comparison, inequality

Stateflow ® action language does not support division of complex operands
because this operation requires a numerically stable implementation,
especially when the base type of the complex data is fixed-point.

To perform complex division, use an Embedded MATLAB™ function, which
provides a numerically accurate and stable result. For details, see “Performing
Complex Division with an Embedded MATLAB™ Function” on page 12-15.

Unary Operations and Actions
These unary operations and actions work with complex operands.
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Example Description

~a Unary minus

!a Logical NOT

a++ Increment

a-- Decrement

Assignment Operations
These assignment operations work with complex operands.

Example Description

a = expression Simple assignment

a += expression Equivalent to a = a + expression

a -= expression Equivalent to a = a - expression

a *= expression Equivalent to a = a * expression
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Using Operators to Handle Complex Numbers

In this section...

“Why Use Operators for Complex Numbers?” on page 12-8

“Defining a Complex Number” on page 12-8

“Accessing Real and Imaginary Parts of a Complex Number” on page 12-9

“Working with Vector Arguments” on page 12-10

Why Use Operators for Complex Numbers?
Use operators to handle complex numbers because Stateflow ® action language
does not support complex number notation (a + bi) , where a and b are real
numbers.

Defining a Complex Number
To define a complex number based on two real values, use the complex
operator described below.

complex Operator

Syntax.

complex(realExp, imagExp)

where realExp and imagExp are arguments that define the real and
imaginary parts of a complex number, respectively. The two arguments must
be real values or expressions that evaluate to real values, where the numeric
types of both arguments are identical.

Description. The complex operator returns a complex number based on
the input arguments.

Example.

complex(3.24*pi, -9.99)

This expression returns the complex number 10.1788 – 9.9900i.
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Accessing Real and Imaginary Parts of a Complex
Number
To access the real and imaginary parts of a complex number, use the operators
real and imag described below.

real Operator

Syntax.

real(compExp)

where compExp is an expression that evaluates to a complex number.

Description. The real operator returns the value of the real part of a
complex number.

Note If the input argument is a purely imaginary number, the real operator
returns a value of 0.

Example.

real(frame(200))

If the expression frame(200) evaluates to the complex number 8.23 + 4.56i,
the real operator returns a value of 8.2300.

imag Operator

Syntax.

imag(compExp)

where compExp is an expression that evaluates to a complex number.

Description. The imag operator returns the value of the imaginary part
of a complex number.
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Note If the input argument is a real number, the imag operator returns
a value of 0.

Example.

imag(frame(200))

If the expression frame(200) evaluates to the complex number 8.23 + 4.56i,
the imag operator returns a value of 4.5600.

Working with Vector Arguments
The operators complex , real , and imag also work with vector arguments.

Example If the input x is... Then the output y is...

y = real(x) An n-dimensional
vector of complex values

An n-dimensional
vector of real values

y = imag(x) An n-dimensional
vector of real values

An n-dimensional
vector of zeros

y =
complex(real(x),
imag(x))

An n-dimensional
vector of complex or
real values

An n-dimensional
vector identical to the
input argument
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Rules for Using Complex Data in Stateflow ® Charts

These rules apply when you use complex data in Stateflow ® charts.

Do not use complex number notation in actions

Stateflow action language does not support complex number notation (a +
bi) , where a and b are real numbers. Therefo re, you cannot use complex
number notation in state actions, transition conditions and actions, or any
Stateflow action language statements.

To define a complex number, use the complex operator described in “Using
Operators to Handle Complex Numbers” on page 12-8.

Do not perform math function operations on complex data in
Stateflow ® action language

Math operations such as sin , cos , min , max, and abs do not work with
complex data in Stateflow action language. However, you can use Embedded
MATLAB™ functions for these operations.

For more information, see “Performing Math Function Operations with an
Embedded MATLAB™ Function” on page 12-14.

Mix complex and real operands only for addition, subtraction, and
multiplication

If you mix operands for any other math operations in Stateflow action
language, an error message appears when you try to simulate your model.

To mix complex and real operands for division, you can use an Embedded
MATLAB function as described in “Performing Complex Division with an
Embedded MATLAB™ Function” on page 12-15.
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Tip Another way to mix operands for division is to use the complex , real ,
and imag operators in Stateflow action language.

Suppose that you want to calculate y = x1/x2 , where x1 is complex and x2 is
real. You can rewrite this calculation as:

y = complex(real(x1)/x2, imag(x1)/x2)

For more information, see “Using Operators to Handle Complex Numbers”
on page 12-8.

Do not define complex data with constant or data store memory
scope

If you define complex data with Constant or Data Store Memory scope, an
error message appears when you try to simulate your model.

Do not define complex data with ml, struct, or boolean base type

If you define complex data with ml , struct , or boolean base type, an error
message appears when you try to simulate your model.

Use only real values to set initial values of complex data

When you define the initial value for data that is complex, use only a real
value. See “Properties You Can Set in the Value Attributes Pane” on page 7-21
for instructions on setting an initia l value in the Data properties dialog.

Do not enter minimum or maximum values for complex data

In the Value Attributes pane of the Data properties dialog, do not enter any
values in the Minimum or Maximum field when you define complex data. If
you enter a value in either field, an error message appears when you try to
simulate your model.

12-12



Rules for Using Complex Data in Stateflow® Charts

Assign complex values only to data of complex data type

If you assign complex values to real data types, an error message appears
when you try to simulate your model.

Note You can assign both real and complex values to complex data types.

Do not use complex data with temporal logic operators

You cannot use complex data as an argum ent for temporal logic operators,
because you cannot define time as a complex number.
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Best Practices for Using Complex Data in Stateflow ® Charts

In this section...

“Performing Math Function Opera tions with an Embedded MATLAB™
Function” on page 12-14

“Performing Complex Division with an Embedded MATLAB™ Function” on
page 12-15

Performing Math Function Operations with an
Embedded MATLAB™ Function
Math functions such as sin , cos , min , max, and abs do not work with complex
data in Stateflow ® action language. However, you can use an Embedded
MATLAB™ function in your chart to perform math function operations on
complex data.

A Simple Example
Suppose that you want to find the absolute value of a complex number. Follow
these steps:

1 Add this Embedded MATLAB function to your chart.

2 Double-click the function box to open the Embedded MATLAB Editor.

3 In the Embedded MATLAB Editor, enter the code below.
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The function myabs takes a complex input u and returns the absolute value
as an output y.

4 Configure the input argument u to accept complex values.

a In the Stateflow Editor, select View > Model Explorer.

b In the Model Hierarchy pane of the Model Explorer, navigate to the
Embedded MATLAB function myabs.

c In the Contents pane of the Model Explorer, right-click the input
argument u and select Properties from the context menu.

d In the Data properties dialog, select On in the Complexity field and
click OK.

Performing Complex Division with an Embedded
MATLAB™ Function
Division with complex operands is not available as a binary or assignment
operation in Stateflow action language. However, you can use an Embedded
MATLAB function in your chart to perform division on complex data.

A Simple Example
Suppose that you want to divide two co mplex numbers. Follow these steps:

1 Add this Embedded MATLAB function to your chart.

2 Double-click the function box to open the Embedded MATLAB Editor.

3 In the Embedded MATLAB Editor, enter the code below.
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The function mydiv takes two complex inputs u1 and u2 and returns the
complex quotient of the two numbers as an output y.

4 Configure the input and output ar guments to accept complex values.

a In the Stateflow Editor, select View > Model Explorer.

b In the Model Hierarchy pane of the Model Explorer, navigate to the
Embedded MATLAB function mydiv .

c For each input and output argument, follow these steps:

i In the Contents pane of the Model Explorer, r ight-click the argument
and select Properties from the context menu.

ii In the Data properties dialog, select On in the Complexity field and
click OK.

12-16



Implementing a Frame Synchronization Controller Using a Stateflow® Chart

Implementing a Frame Synchronization Controller Using a
Stateflow ® Char t

In this section...

“What Is Frame Synchronization?” on page 12-17

“A Frame Synchronization Controller Chart” on page 12-17

“Key Features of the Chart” on page 12-19

“Opening the Model” on page 12-19

“How the Chart Works” on page 12-19

What Is Frame S ynchronization?
In communicati on systems, frame synchronization is a method of finding
valid data in a transmission that consists of data frames. To aid frame
synchronizat ion, the transmitter inserts a fixed data pattern at the start of
each data fra me to mark the start of valid data. The receiver searches for the
fixed patter n in each data frame and achieves frame synchronization when
the correlat ion between the input data and the fixed pattern is high.

A Frame Synch ronization Controller Chart
This Simulin k® subsystem is part of a larger model that illustrates the use of
Communicat ions Blockset™ software to model a communication system. The
chart Frame Sync Controller models a frame synchronization algorithm.
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The chart contains these states, transitions, and Embedded MATLAB™
functions:

The chart calculates the correlation between the input signal I/Q and the
fixed data pattern trainSig . You define trainSig by writing and running a
MATLAB ® script before you s imulate the model.

• If the correlation exceeds 50 percent , frame synchronization occurs. The
chart stores 220 valid data points in the complex vector frame .

• If the correlation stays below 50 percent after the chart has evaluated 300
data points, the frame synchronization algorithm resets.

For more information, see “How the Chart Works” on page 12-19.
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Key Features of the Chart
Key features of the chart include:

• Complex input and output signals

The chart accepts a complex input signal I/Q . After synchronizing the data
frame, the chart stores the valid data in a complex output signal frame .

• Complex multiplication

The output signal frame is a vector of complex products between each valid
data point and the phase angle of the carrier wave.

• Indexing into a complex vector

The chart uses the temporalCount operator to index into the complex
vector frame . (See “Using Temporal Logic in St ate Actions and Transitions”
on page 9-57 for information about the temporalCount operator.)

• Embedded MATLAB functions with complex arguments

The Embedded MATLAB functions correlate and get_carrier_phase
have complex input and output arguments.

Opening the Model
To open the model, type sf_frame_sync_controller at the MATLAB
command prompt.

Note You cannot simulate this model by itself. This example is available only
to illustrate the use of complex data in a Stateflow ® chart.

How the Chart Works

Stage 1: Activation of the Fram e Synchronization Algorithm
When the chart wakes up, the state look_for_sync activates to start the
frame synchronization algorithm.
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Stage 2: Calculation of Correlation Between the Input Signal
and the Fixed Pattern
The Embedded MATLAB function correlate finds the correlation between
the input signal I/Q and the fixed data pattern trainSig . Then, the function
stores the complex correlation as corr .

Code for the function correlate appears below.

Stage 3: Calculation of Absolute Value of the Complex
Correlation
The Embedded MATLAB function myabs finds the absolute value of corr
and stores the output as corrAbs . The value of corrAbs is the correlation
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percentage, which can range from 0 to 100 percent. At 0 percent, there is no
correlation; at 100 percent, the re is perfect correlation.

Code for the function myabs appears below.

Stage 4: Identification of Valid Data in a Data Frame
If corrAbs exceeds 50 percent, the correla tion is high and the chart has
identified the start of valid data in a da ta frame. The transition from the state
look_for_sync to get_payload occurs.

If corrAbs stays below 50 percent after the chart has evaluated 300 data
points, the frame synchronization algorithm restarts. See “Stage 7: Restart of
the Frame Synchronization Algorithm” on page 12-22.

Stage 5: Storage of Valid Data in a Complex Vector
When the correlation is high, the state get_payload activates.

The Embedded MATLAB function get_carrier_phase finds the phase angle
of the carrier wave and stores the value as phasor . Then, the state multiplies
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the input signal I/Q with the phase angle phasor and stores each complex
product in successive elements of the vector frame .

Code for the function get_carrier_phase appears below.

Stage 6: Output of Valid Data from a Data Frame
After collecting 220 data points, the chart outputs the vector frame to the
next block in the model.

Stage 7: Restart of the Frame Synchronization Algorithm
The state look_for_sync reactivates, and the fr ame synchronization
algorithm restarts for the next data frame.
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Defining Interfaces to
Simulink ® Models and the
MATLAB ® Workspace

Overview of Stateflow ® Block
Interfaces (p. 13-3)

Describes how Stateflow ® charts
interface to Simulink ® models and
the MATLAB ® workspace

Specifying Chart Properties (p. 13-6) Tells you how to specify properties
for your chart. Part of the interface
for a chart to its Simulink model is
set when you specify the properties
for a chart

Setting the Stateflow ® Block Update
Method (p. 13-16)

Implementing diff erent Stateflow
interfaces in a Simulink model
requires you to set the update
method for your chart. This section
describes each of the settings for the
update method of your chart

Implementing Update Interfaces to
Simulink ® Models (p. 13-18)

Summarizes all the settings
necessary for implementing any
possible interface in a Simulink
model to your Stateflow Chart block

Creating Chart Libraries (p. 13-28) Shows you how to save Stateflow
charts that you can place in the
Simulink block library for repeated
use in a Simulink model
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MATLAB ® Workspace Interfaces
(p. 13-29)

The MATLAB workspace is an
area of memory normally accessible
from the MATLAB command line.
This section describes ways that
a Stateflow chart can access the
data and functions of the MATLAB
workspace

Interface to External Sources
(p. 13-31)

Describes the ways in which a
Stateflow chart can interface data
and events outside its Simulink
model
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Overview of Stateflow ® Block Interfaces

In this section...

“Stateflow ® Block Interfaces” on page 13-3

“Typical Tasks to Define Stateflow ® Block Interfaces” on page 13-4

“Where to Find More Information on Events and Data” on page 13-4

Stateflow ® Block Interfaces
Each Stateflow ® block interfaces to its Simulink ® model. Each Stateflow block
can interface to sources external to the Simulink model (data, events, custom
code). Events and data are the Stateflow objects that define the interface from
the point of view of the Stateflow block.

Events can be local to the Stateflow block or can be propagated to and from
the Simulink model and sources exter nal to it. Data can be local to the
Stateflow block or can be shared with and passed to the Simulink model and
to sources external to the Simulink model.

The Stateflow interfaces include the following:

• Physical connections between Simul ink blocks and the Stateflow block

• Event and data information exchanged between the Stateflow block and
external sources

• The properties of a Stateflow chart

• Graphical functions exported from a chart

See “Exporting Chart-Level Graphical Functions” on page 6-36 for more
details.

• The MATLAB ® workspace

See “Using MATLAB ® Functions and Data in Actions” on page 9-34 for
more details.

• Definitions in external code sources
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Typical Tasks to Define Stateflow ® Block Interfaces
Defining the interface for a Stateflow block in a Simulink model involves some
or all the tasks described in the following topics:

• Specify the update method for a Stat eflow block in a Simulink model.

This task is described in “Setting the Stateflow ® Block Update Method” on
page 13-16.

• Define the input and output data and events that you need.

See the following topics for detailed information:

- “Defining Input Events” on page 8-10

- “Defining Output Events” on page 8-12

- “Sharing Input and Outp ut Data with Simulink ® Models” on page 7-28

• Add and define any nonlocal data and events with which your Stateflow
chart must interact.

• Define relationships with any external sources.

See the topics “MATLAB ® Workspace Interfaces” on page 13-29 and
“Interface to External Sources” on page 13-31.

The preceding task list is a typical sequence. You may find that another
sequence better complements your model development.

See “Implementing Update Interfaces to Simulink ® Models” on page 13-18 for
examples of implemented interfaces to Simulink models.

Where to Find More Information on Events and Data
See the following references for defini ng the interface of a Stateflow Chart
block in a Simulink model:

• “Defining Input Events” on page 8-10

• “Defining Output Events” on page 8-12

• “Importing Events from Stateflow ® External Code” on page 8-19

• “Exporting Events to Stateflow ® External Code” on page 8-18
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• “Sharing Input and Output Data with Simulink ® Models” on page 7-28

• “Sharing Stateflow ® Data with External Modules” on page 7-40

13-5



13 Defining Interfaces to Simulink® Models and the MATLAB® Workspace

Specifying Chart Properties

In this section...

“About Chart Properties” on page 13-6

“Setting Properties for Individual Charts” on page 13-6

“Setting Properties for All Charts in the Model” on page 13-13

About Chart Properties
You set part of the interface for a Stateflow ® block to its Simulink ® model
when you specify the properties for th e chart of a Stateflow block. You can
specify properties for individual charts or for all charts in a model.

Setting Properties for Individual Charts
To specify properties for an individual Stateflow chart, follow these steps:

1 Double-click on a Stateflow chart to open it in the Stateflow Editor.

2 Right-click an open area of the Stateflow chart.

3 From the context menu, select Properties.

The properties dialog for the chart appears.
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4 Ente r properties for the chart based on these descriptions:

Field Description

Name Stateflow chart name; r ead-only; click this
hypertext link to bring the chart to the
foreground.
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Field Description

Machine Simulink subsystem name; read-only; click this
hypertext link to bring the Simulink subsystem
to the foreground.

State Machine Type Type of state machine to create. Choose from:
• Classic: Default state machine. Provides

full set of Stateflow chart semantics (see
Chapter 3, “Stateflow ® Chart Semantics”) .

• Mealy: State machine in which output is a
function of inputs and state.

• Moore: State machine in which output is a
function only of state.

Mealy and Moore charts use a subset
of Stateflow chart semantics. For more
information, see Chapter 5, “Building Mealy
and Moore Charts”.

Update method Method by which a simulation updates (wakes
up) a chart in a Simulink model (see “Setting
the Stateflow ® Block Update Method” on page
13-16). Choose from Inherited, Discrete,
or Continuous. For more information
about continuous updating, see Chapter
10, “Modeling Continuous-Time Systems in
Stateflow ® Charts”.

Sample Time If Update method is Discrete, enter a sample
time.

Enable zero-crossing
detection

If Update method is Continuous,
zero-crossing detection is enabled by default.
See “When to Enable Zero-Crossing Detection”
on page 10-11 in Chapter 10, “Modeling
Continuous-Time Systems in Stateflow ®

Charts”.
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Field Description

Enable C-bit
operations

Select this box to recognize C bitwise operators
(~, &, |, ^, >>, and so on) in action language
statements and encode them as C bitwise
operations.

If this box is not selected, the following occurs:

• & and | are interpreted as logical operators.

• ^ is interpreted as the power operator
(for example, 2^3 = 8).

• The remaining expressions (>>, <<, and so
on) result in parse errors.

To specify this interpretation for all charts in
the model (machine), select the Apply to all
charts in machine now button.

User specified
state/transition
execution order

Select this box to switch to explicit ordering
of parallel states and transitions. In this
mode, you have complete control of the order
in which parallel states are executed and
transitions originating from a source are
tested for execution. For more information, see
“Execution Order for Parallel States” on page
3-38 and “Transition Testing Order” on page
3-22.

Export Chart Level
Graphical Functions

Exports graphical functions defined at the
chart’s root level. See “Exporting Chart-Level
Graphical Functions” on page 6-36 for more
information.
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Field Description

Use Strong Data
Typing with
Simulink I/O

If you select this option, the Chart block for
this chart can accept input signals of any data
type supported by Simulink software, provided
that the type of the input signal matches the
type of the corresponding chart input data item
(see “Sharing Input and Output Data with
Simulink ® Models” on page 7-28). If the types
do not match, a type mismatch error occurs.

If this item is cleared, the chart accepts
and outputs only signals of type double .
In this case, Stateflow software converts
Simulink input signals to the data types of
the corresponding chart input data items.
Similarly, Stateflow software converts chart
output data (see “Sharing Input and Output
Data with Simulink ® Models” on page 7-28) to
type double if this option is not selected.

For fixed-point data, see the note following this
table.

Execute (enter)
Chart At
Initialization

Select this option if you want a chart’s state
configuration to be initialized at time 0 instead
of at the first occurrence of an input event (see
“Executing a Chart at Initialization” on page
3-17).
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Field Description

Initialize Outputs
Every Time Chart
Wakes Up

Interprets the initial value of outputs every
time a chart wakes up, not only at time 0.
When you set an initial value for an output data
object, the output will be reset to that value.

Outputs are reset whenever a chart is triggered,
whether by function call, edge trigger, or clock
tick.

Enable this option to

• Ensure all outputs are defined in every chart
execution

• Prevent latching of outputs (carrying over
values of outputs computed in previous
executions)

• Give all chart outputs a meaningful initial
value

Enable Super Step
Semantics

Select to enable Stateflow charts to take
multiple transitions in each time step until it
reaches a stable state. For more information,
see “Executing a Chart with Super Step
Semantics” on page 3-7.

Maximum Iterations
in Each Super Step

If you enable super step semantics, specify
the maximum number of transitions the chart
should take in each time step.
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Field Description

Behavior after too
many iterations

If you enable super step semantics, specify
what the chart should do after it reaches the
maximum number of transitions before taking
all valid transitions. The options are:

• Proceed — Chart execution continues to
the next time step

• Throw Error — Simulation stops and an
error message appears

Note The Throw Error option is valid only for
simulation. In generated code, chart execution
always proceeds.

Debugger
breakpoint: On
chart entry

Select to set a debugging breakpoint on entry
to this chart.

Editor: Locked Select to mark the Stateflow chart as read-only
and prohibit any write operations.

Description Textual description/comment.

Document Link Enter a Web URL address or a general
MATLAB ® command. Examples are
www.mathworks.com , mailto:email_address ,
and edit/spec/data/speed.txt .

Note For fixed-point data, the Use Strong Data Typing with Simulink
I/O option is always on. Therefore, if an input or output fixed-point data
in a Stateflow chart does not match its counterpart data in a Simulink
model, a mismatch error results.

5 Select one of the following buttons:

• Apply to save the changes
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• Cancel to cancel any changes since the last apply

• OK to save the changes and close the dialog box

• Help to display the online help in an HTML browser window

Setting Properties for All Charts in the Model
You can set some properties for all charts in the model by setting properties
for the Stateflow machine for a mode l. The Stateflow machine for a model
represents all of the Stateflow blocks in a model.

To set properties for the Statefl ow machine, do the following:

1 In the Chart properties dialog for a pa rticular Stateflo w chart, select the
Machine link at the top of the dialog.

The Machine properties dialog box appears.
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See “Setting Properties for Individual Charts” on page 13-6 for instructions
on how to access the Chart properties dialog for a Stateflow chart.

2 Enter information in the fields provided as described below.

Field Description

Simulink Model Name of the Simulink model that defines
this Stateflow machine, which is read-only.
You change the model name in the Simulink
window when you save the model under a
chosen file name.

Creation Date Date on which this machine was created.

Creator Name of the person who created this Stateflow
machine.

Modified Time of the most recent modification of this
Stateflow machine.

Version Version number of this Stateflow machine.

Use C-like bit
operations in new
charts

If you select this box, all new charts recognize
C bitwise operators (~, &, |, ^, >>, and so on) in
action language statements and encode these
operators as C bitwise operations.

You can enable or disable this option for
individual charts or all charts in the model in
an individual chart’s property dialog box. See
“Setting Properties for Individual Charts” on
page 13-6 for a detailed explanation of this
property.

Description Brief description of this Stateflow machine,
which is stored with the model that defines it.

Document Link MATLAB expression that, when evaluated,
displays documentation for this Stateflow
machine.

3 Click one of the following:

• Apply saves the changes.
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• Cancel closes the dialog without making any changes.

• OK saves the changes and closes the dialog box.

• Help displays the online help in an HTML browser window.
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Setting the Stateflow ® Block Update Method

Stateflow ® blocks are Simulink ® subsystems. Simulink events wake up
subsystems for execution. To specify a wakeup method for a chart, set the
chart’s Update method property in the Chart dialog for the chart (see
“Specifying Chart Properties” on page 13-6). Choose from the following
wakeup methods:

• Inherited

This is the default update method. S pecifying this method causes input
from the Simulink model to determine when the chart wakes up during a
simulation.

If you define input events for the char t, the Stateflow block is explicitly
triggered by a signal on its trigger port originating from a connected
Simulink block. This trigger input event can be set in the Model Explorer
to occur in response to a Simulink signal that is Rising, Falling, or Either
(rising and falling), or in response to a Function Call. See “Defining Input
Events” on page 8-10.

If you do not define input events, the S tateflow block implicitly inherits
triggers from the Simulink model. These implicit events are the sample
times (discrete or continuous) of the Simulink signals providing inputs to
the chart. If you define data inputs (see “Sharing Input and Output Data
with Simulink ® Models” on page 7-28), the chart awakens at the rate of the
fastest data input. If you do not define any data input for the chart, the
chart wakes up as defined by its parent subsystem’s execution behavior.

• Discrete

The Simulink model awakens (sample s) the Stateflow block at the rate
you specify as the block’s Sample Time property. An implicit event is
generated at regular time intervals co rresponding to the s pecified rate. The
sample time is in the same units as the Simulink simulation time. Note
that other blocks in the Simulink model can have different sample times.
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• Continuous

Stateflow charts maintain mode in minor time steps and can define
continuous states and their derivatives. In addition, charts can register
zero crossings, allowing Simulink mo dels to sample Stateflow charts
whenever state changes occur. See Chapter 10, “Modeling Continuous-Time
Systems in Stateflow ® Charts”.
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Implementing Update Interfaces to Simulink ® Models

In this section...

“Defining a Triggered Stateflow ® Block” on page 13-18

“Defining a Sampled Stateflow ® Block” on page 13-19

“Defining an Inherited Stateflow ® Block” on page 13-20

“Defining a Continuous Stateflow ® Block” on page 13-21

“Defining Function-Call Output Events” on page 13-21

“Defining Edge-Triggered Output Events” on page 13-25

Defining a Triggered Stateflow ® Block
These are essential conditions that define an edge-triggered Stateflow ® block:

• The chart Update method (set in the Chart properties dialog box) is set to
Triggered or Inherited. (See “Specifying Chart P roperties” on page 13-6.)

• The chart has an Input from Simulink event defined and an edge-trigger
type specified. (See “Defining Input Events” on page 8-10.)

Triggered Stateflow ® Block Example
A Pulse Generator block connected to the t rigger port of the Stateflow block is
an example of an edge-triggered Stateflow block.
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The Input from Simulink event has a Rising Edge trigger type. If you
define more than one Input from Simulink event, the Simulink ® model
determines the sample times to be cons istent with various rates of all the
incoming signals. The outputs of a triggered Stateflow block are held after the
execution of the block.

Defining a Sampled Stateflow ® Block
There are two ways you can define a sa mpled Stateflow block. Setting the
chart Update method (set in the Chart properties dialog box) to Sampled
and entering a Sample Time value define a sampled Stateflow block. (See
“Specifying Chart Properties” on page 13-6.)

Alternatively, you can add and define an Input from Simulink data object.
Data is added and defined using either the Stateflow Editor Add menu or
the Model Explorer. (See “Sharing I nput and Output Data with Simulink ®

Models” on page 7-28.) The Simulink mo del determines the chart sample time
to be consistent with the rate of the incoming data signal.

The Sample Time (set in the Chart properties di alog box) takes precedence
over the sample time of any Input from Simulink data.

Sampled Stateflow ® Block Example
You specify a discrete sample rate to have a Simulink model trigger a
Stateflow block that is not explicitly t riggered via the trigger port. You can
specify a Sample Time for the Stateflow chart in the Chart properties dialog
box. The Stateflow block is then called by the Simulink model at the defined,
regular sample times.
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The outputs of a sampled Stateflow block are held after the execution of the
block.

Defining an Inherited Stateflow ® Block
These are essential conditions that defin e an inherited trigger Stateflow block:

• The chart Update method (set in the Chart properties dialog box) is set to
Triggered or Inherited. (See “Specifying Chart Properties” on page 13-6)

• The chart has an Input from Simulink data object defined (added
and defined using either the Stateflow Editor Add menu or the Model
Explorer). (See “Sharing Input and Output Data with Simulink ® Models”
on page 7-28.) The Simulink model determines the chart sample time to be
consistent with the rate of t he incoming data signal.

Inherited Stateflow ® Block Example
A Simulink model can trigger a Stateflow block that is not explicitly triggered
by a trigger port or a specified discrete sample time. In this case, the Simulink
model calls the Stateflow block at a sample time determined by the model.

In this example, more than one Input from Simulink data object is defined.
The Simulink model determines the sam ple times to be consistent with the
rates of both incoming signals.
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The outputs of an inherited trigger Stateflow block are held after the
execution of the block.

Defining a Continuous Stateflow ® Block
To define a continuous Stateflow block, set the chart Update method in
the Chart properties dialog box to Continuous. See Chapter 10, “Modeling
Continuous-Time Systems in Stateflow ® Charts”.

Defining Function-Call Output Events
This topic shows you how to trigger a f unction-call subsystem in a Simulink
model with a Function Call output event in a Stateflow chart. It assumes
that you already have in place a programmed function-call subsystem and
a Stateflow block in the Simulink model. Use the following steps to connect
the Stateflow block to the function-call subsystem and trigger it during
simulation.

1 In the Stateflow Editor, select Add > Event.

A pop-up menu of different event scopes appears.

2 From the pop-up menu, select Output to Simulink.

The Event dialog appears with a default name of event and a Scope of
Output to Simulink.

3 In the Event dialog, in the Trigger field, select Function Call.
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4 Name the event appropriately and select OK to close the dialog.

An output port with the name of the event you add appears on the right
side of the Stateflow block.

5 From the Simulink Library Browser Ports & Subsystems library, place a
function-call subsystem in the Simulink model.

You can also create a function-call subsystem by adding a subsystem to the
model and adding a Trigger port to the subsystem. In the TriggerPort
parameters dialog for the Trigger block, set the Trigger type field to
function-call.

6 Connect the output port on the Stateflow block for the Function Call
trigger Output to Simulink event you add to the function-call trigger
input port of the subsystem.

You should avoid placing any other blocks in the connection lines between
the Stateflow block and th e function-call subsyst em for Stateflow blocks
that have feedback loops from a block triggered by a function-call event.

Note You cannot connect a function-cal l output event from a Stateflow
chart to a Simulink Demux block in order to trigger multiple subsystems.

7 To execute the function-call subsyst em, include an event broadcast of the
function-call output event in the actions of the Stateflow chart as shown in
the followi ng example.
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Function-Call Output Events Example

The cont rol Stateflow block has one data input called pulse and two
functio n-call output events called filter1 and filter2 . A pulse generator
provide s input data to the control block. Each function-call output event is
attache d to a subsystem in the Simulink model that is set to trigger by a
functi on call.

Each tr ansition in the control chart has a c ondition based on the size of the
input p ulse. When taken, each transition broadcasts a function-call output
event t hat determines whether to make a function call to filter1 or filter2 .
If the Output to Simulink function-call event filter1 is broadcast, the band
pass f ilter1 subsystem executes. If the Output to Simulink function-call
event filter2 is broadcast, the band pass filter2 subsystem executes.
When either of these subsystems is finished executing, control is returned
to th e control Stateflow block for the next execution step. In this way, the
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Stateflow block controls the execution of band pass filter1 and band pass
filter2 .

Function-Call Semantics Example
In this example the transition from state A to state B (in the Stateflow chart)
has a transition action that specifies the broadcast of event1 . event1 is an
Output to Simulink event with a Function Call trigger type. The Stateflow
block output port for event1 is connected to the trigger port of the band pass
filter1 Simulink block. The band pass filter1 block has its Trigger type
field set to Function Call.

This sequence occurs when state A is active and the transition from state A to
state B is valid and is taken:

1 State A exit actions execute and complete.
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2 State A is marked inactive.

3 The transition action executes and completes.

In this case the transition action is a broadcast of event1 . Because event1
is an event output to the Simulink subsystem with a function-call trigger,
the band pass filter1 block executes and completes, and then returns to
the next statement in the execu tion sequence. The value of y is fed back to
the Stateflow chart.

4 State B is marked active.

5 State B entry actions execute and complete ( x = x + y ). The value of y is
the updated value from the band pass filter1 block.

6 The Stateflow chart goes back to sleep, waiting to be awakened by another
event.

Defining Edge-Triggered Output Events
A Simulink model controls the execution of edge-triggered subsystems with
output events. These are essential conditions that define this use of triggered
output events:

• The chart has an Output to Simulink event with the trigger type Either
Edge. See “Defining Output Events” on page 8-12.

• The Simulink block connected to the edge-triggered Output to Simulink
event has its own trigger type set to the equivalent edge triggering.

Edge-Triggered Semantics Example
In this example, the t ransition from state A to state B (in the Stateflow chart)
has a transition action that specifies the broadcast of event1 . event1 is an
Output to Simulink event with an Either edge trigger type. The Stateflow
block output port for event1 is connected to the trigger port of the band pass
filter1 Simulink block. The band pass filter1 block has its Trigger
type field set to Either edge.
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This sequence occurs when state A is active and the transition from state A to
state B is valid and is taken:

1 State A exit actions execute and complete.

2 State A is marked inactive.

3 The transition action, an edge-triggered Output to Simulink event
broadcast, registers (but does not execute). The Simulink model is
controlling the executio n, and execution control d oes not shift until the
Stateflow block completes.

4 State B is marked active.
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5 State B entry actions execute and complete ( x = x++ ).

6 The Stateflow chart goes back to sleep, waiting to be awakened by another
event.

7 The band pass filter1 block is triggered, executes, and completes.
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Creating Chart Libraries

A Stateflow ® chart library is a Simulink ® block library that contains Stateflow
Chart blocks (and, optionally, other types of Simulink blocks as well). Just
as Simulink libraries serve as repositories of commonly used blocks, chart
libraries serve as repositories of commonly used charts.

You create a chart library in the same w ay you create other types of Simulink
libraries. First, create an empty chart library by selecting File > New >
Library in the Simulink window. Then create or copy Chart blocks into the
library just as you would create or copy Chart blocks into a Simulink model.

You use chart libraries in the same way you use other types of Simulink
libraries. To include a chart from a library in your model, copy or drag the
chart from the library to the model. Si mulink software creates a link from
the instance in your model to the instance in the library. You can update all
instances of the chart simply by updating the library instance.

Note Events parented by a library Statef low machine are invalid. You can
define such events, but they will be flagged as errors when you parse a model.
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MATLAB ® Workspace Interfaces

In this section...

“About the MATLAB ® Workspace” on page 13-29

“Examining the MATLAB ® Workspace” on page 13-29

“Interfacing the MATLAB ® Workspace with Stateflow ® Charts” on page
13-29

About the MATLAB ® Workspace
The MATLAB ® workspace is an area of memory normally accessible from the
MATLAB command line. It maintains a set of variables built up during a
MATLAB session.

Examining the MATLAB ® Workspace
Two commands, who and whos, show the current contents of the workspace.
The who command gives a short list, while whos also gives size and storage
information.

To delete all the existing variables from the workspace, enter clear at the
MATLAB command line.

See the MATLAB software documentation for more information.

Interfacing the MATLAB ® Workspace with Stateflow ®

Charts
Stateflow ® charts have the following acce ss to the MATLAB workspace:

• You can access MATLAB data or MATLA B functions in Stateflow action
language with the ml namespace operator or the ml function.

See “Using MATLAB ® Functions and Data in Actions” on page 9-34 for
more information.

• You can use the MATLAB workspace to initialize chart data at the
beginning of a simulation.
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See “Entering Expressions and Parameters for Data Properties” on page
7-25.

• You can save chart data to the workspace at the end of a simulation.

See “Saving Data to the MATLAB ® Workspace” on page 7-32 for more
information.
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Interface to External Sources

In this section...

“Introduction” on page 13-31

“Exported Data” on page 13-31

“Imported Data” on page 13-33

“Exported Events” on page 13-34

“Imported Events” on page 13-36

Introduction
Any source of data, events, or code that is outside a Stateflow ® chart, its
Stateflow machine, or its Simulink ® model, is considered external to that
Stateflow chart. You can interface da ta and events from external sources
to your Stateflow chart. See Chapter 7, “Defining Data” and Chapter 8,
“Defining Events” for information on defining data and events.

You can include external source code in the Custom Code pane of the
Simulation Target dialog box. (For details, see Chapter 18, “Building
Targets”.)

Exported Data
You might want an external source (outsi de the Stateflow chart, its Stateflow
machine, and its Simulink model) to be able to access a data object. By
defining a data object’s scope as Exported, you make it accessible to external
sources. Exported data must be parent ed by the Stateflow machine, because
the machine has the highest level in the Stateflow hierarchy and can interface
to external sources. The Stateflow mach ine also retains the ability to access
the exported data object. Exporting the data object does not imply anything
about what the external source does with the data. It is the responsibility
of the external source to include the exported data object (in the manner
appropriate to the source) to make use of the right to access the data.

If the external source is another Sta teflow machine, then that machine
defines an exported data object, and the other machine defines the same data
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object as Imported. Stateflow software generate s the appropriate export and
import data code for both machines.

Exported Data Example
The following example shows the forma t required in the external code source
(custom code) to import a State flow exported data object:
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Imported Data
Similarly, you m ight want to access a data object that is externally defined
outside the Stat eflow chart, its Stateflow machine, and its Simulink model. If
you define the da ta’s scope asImported, the data can be accessed anywhere
within the hier archy of the Stateflow machine (including any offspring of
the machine). A n imported data object’s parent is external. However, the
data object needs an adoptive parent to resolve symbols for code generation.
An imported da ta object’s adoptive parent mu st be the Stateflow machine,
because the machine has the highest level in the Stateflow hierarchy and can
interface to e xternal sources. It is the responsibility of the external source
to make the im ported data object available (in the manner appropriate to
the source).

If the extern al source for the data is another Stateflow machine, that machine
must define the same data object as Exported. Stateflow software generates
the appropr iate import and export data code for both machines.

Imported Data Example
This exampl e shows the format required to retrieve imported data from an
external co de source (custom code).
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Export ed Events
You mig ht want an external source (outside the Stateflow chart, its Stateflow
machin e, and its Simulink model) to be able to broadcast an event. By
defin ing an event’s scope to be Exported, you make that event available to
exter nal sources for broadcast purposes. Exported events must be parented
by the Stateflow machine, because the machine has the highest level in the
State flow hierarchy and can interface to external sources. The Stateflow
machine also retains the ability to broadc ast the exported event. Exporting
the event does not imply anything about what the external source does with
the i nformation. It is the responsibility of the external source to include the
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Exported event (in the manner appropriate to the source) to make use of the
right to broadcast the event.

If the external source for the event is another Stateflow machine, then that
machine must define the event as an Exported event, and the other machine
must define the same event as Imported. Stateflow software generates the
appropriate export and import event code for both machines.

Consider a real-world example to clarify when to define an Exported event.
You have purchased a communications pager. There are a few people you want
to be able to page you, so you give those people your personal pager number.
These people now know your pager number and can call that number and page
you at any time. You do not usually page yourself, but you can do so. Telling
someone the pager number does not mean they have heard and recorded the
number. It is the other person’s responsibility to retain the number.

Exported Event Example
This example shows the format require d in the external code source (custom
code) to take advantage of an Exported event.
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Impo rted Events
You mi ght want to broadcast an event that is defined externally (outside the
Stat eflow chart, its Stateflow machine, and its Simulink model). By defining
an event’s scope to be Imported, you can broadcast the event anywhere
with in the hierarchy of that machine (including any offspring of the machine).
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An imported event’s parent is external. However, the event needs an adoptive
parent to resolve symbols for code generation. An imported event’s adoptive
parent must be the Stateflow machine, because the machine has the highest
level in the Stateflow hierarchy and can interface to external sources. It is the
responsibility of the external source to make the imported event available (in
the manner appropriate to the source).

If the external source is another Sta teflow machine, the source machine
must define the same event as Exported. Stateflow software generates the
appropriate import and export event code for both machines.

The preceding pager example for exported events can clarify the use of
imported events. For example, someon e buys a pager and tells you that you
might want to use this number to page them in the future, and they give
you the pager number to record. You can then use that number to page that
person.

Imported Event Example
The following example shows the forma t required in an external code source
(custom code) to generate an Imported event.
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About Stateflow ® Structures

In this section...

“What is a Stateflow ® Structure?” on page 14-2

“What You Can Do with Structures” on page 14-2

“Example of Stateflow ® Structures” on page 14-2

What is a Stateflow ® Structure?
The Stateflow ® structure is a data type that you define as a Simulink.Bus
object. The elements of the Stateflow structure data type are called fields.
They can be any combination of

• Individual signals of mixed data types

• Composite signals, such as muxed signals or buses

What You Can Do with Structures
With the Stateflow structure data type, you can create

• Inputs and outputs for accessing Simulink ® bus signals from Stateflow
charts, Truth Table blocks, and Emb edded MATLAB™ function blocks (see
“Defining Structure Inputs and Outputs” on page 14-7)

• Local structure data in Stateflow chart s, truth tables, graphical functions,
Embedded MATLAB functions, and boxes (see “Defining Local Structures”
on page 14-11)

• Temporary structure data in Stateflow graphical functions, truth tables,
and Embedded MATLAB functions (see “Defining Temporary Structures”
on page 14-12)

Example of Stateflow ® Structures
The model sfbus_demo provides examples of structures in a Stateflow chart
and graphical function, as follows:
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In this model, the Stateflow chart receives a bus input signal using the
structure inbus at input port 1 and outputs a bus signal from the structure
outbus at output port 1. The input signal comes from the Simulink Bus
Creator block COUNTERBUSCreator, which bundles signals from two other Bus
Creator blocks: SIGNALBUSCreator and LIMITBUSCreator . The structure
outbus connects to a Simulink Bus Selector block BUSSelector . The
Stateflow chart also contains a local structure counterbus_struct and a
graphical function get_input_signal that contains an input structure u
and output structure y.
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Structure Definitions in sfbus_demo Stateflow ® Chart
Here are the definitions of the structures in the Stateflow chart of the
sfbus_demo model, as they appear in the Model Explorer:

Note The local structure counterbus_struct is defined using the type
operator in an expression, as described in “Defining Structure Types with
Expressions” on page 14-13.

Structure Definitions in sfbus_demo Stateflow ® Graphical
Function
Here are the definitions of the structures in the graphical function
get_input_signal as they appear in the Model Explorer:
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Simulink ® Bus Objects Define Stateflow ® Structures
Each Stateflow structure must be defined by a Simulink.Bus object in the
base workspace. This means that the str ucture shares the same properties as
the bus object, including number, name, and type of fields. For example, the
sfbus_demo model defines the following bus objects in the base workspace:

You can find the bus object that defines a Stateflow structure by looking in
the Data Type and Compiled Type colu mns in the Contents pane of the Model
Explorer. For example, the structures inbus , outbus , and counterbus_struct
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are all defined in sfbus_demo by the same Simulink bus object, COUNTERBUS,
as shown in this view of the Model Explorer:

Based on these definitions, inbus , outbus , and counterbus_struct have
the same properties as COUNTERBUS. For example, these Stateflow structures
in sfbus_demo reference their fields by the same names as the elements in
COUNTERBUS, as follows:

Structure First Field Second Field

inbus inbus.inputsignal inbus.limits

outbus outbus.inputsignal outbus.limits

counterbus_struct counterbus_struct.inputsignal counterbus_struct.limits

To learn how to define structures in Stateflow charts using Simulink.Bus
objects, see “Defining Stateflow ® Structures” on page 14-7.

If you define a custom structure in C for your Stateflow chart, you must make
sure that the structure’s typedef declaration in your header file matches the
properties of the Simulink.Bus object that defines the structure, as described
in “Integrating Custom Structures in Stateflow ® Charts” on page 14-20.
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Defining Stateflow ® Structures

In this section...

“Rules for Defining Structure Data Types in Stateflow ® Charts” on page 14-7

“Defining Structure Inputs and Outputs” on page 14-7

“Defining Local Structures” on page 14-11

“Defining Temporary Structures” on page 14-12

“Defining Structure Types with Expressions” on page 14-13

Rules for Defining Structure Data Types in Stateflow ®

Charts
Follow these rules when defining structures in Stateflow ® charts:

• You must define each structure as a Simulink.Bus object in the base
workspace.

• You cannot define structures for Stateflow machines.

Note TheStateflow machine is the object that contains all other Stateflow
objects in a Simulink ® model (see “Stateflow ® Hierarchy of Objects” on
page 1-20).

• Stateflow structures cannot have scopes defined as Constant, Parameter, or
Data Store Memory.

• Stateflow structures cannot contain arrays of buses.

• Stateflow data array objects cannot contain structures.

Defining Structure Inputs and Outputs

• “Interfacing Stateflow ® Structures with Simulink ® Bus Signals” on page
14-8

• “Working with Virtual and Nonvirtual Buses” on page 14-10
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Interfacing Stateflow ® Structures with Simulink ® Bus Signals
You can drive Stateflow structure inputs by using any Simulink bus signal
that has matching properties. Simi larly, Stateflow charts can output
structures to Simulink blocks that accept bus signals.

To create inputs and outputs in Stateflow charts:

1 Create a Simulink bus object in the bas e workspace to define the structure
type for your Stateflow chart.

For information about how to create Simulink bus objects, see
Simulink.Bus in the Simulink Reference documentation.

2 Select Tools > Explore in the Stateflow Editor to open the Model Explorer.

3 In the Model Explorer, add a data o bject as described in “Adding Data
Using the Model Explorer” on page 7-4.

The Model Explorer adds a data object and opens a Properties dialog box in
its right-hand Dialog pane.

4 In the Name field of the Properties dialog box, enter the name of the
structure data.

5 In the Scope field, select either Input or Output .

6 In the Type field, select Inherit: Same as Simulink , Bus: <bus
object name> , or <data type expression> according to these guidelines:
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Type Works with
Scope

Requirements

Inherit:
Same as
Simulink

Input You do not need to specify a value. The data type is inherited from
previously-defined data, based on the scope you selected for the
data object.

There must be a Simulink bus signal in your model that connects
to the Stateflow structure input.

The Simulink bus signal must be a nonvirtual bus (see “Working
with Virtual and Nonvirtual Buses” on page 14-10).

You must specify a Simulink.Bus object in the base workspace
with the same properties as the bus signal in your model that
connects to the Stateflow structure input. The following properties
must match:

• Number, name, and type of inputs

• Dimension

• Sample Time

• Complexity

• Sampling Mode

If your input signal comes from a Bus Creator block, you must
check the option Specify properties via bus object in the Bus
Creator properties dialog box. When you enable this option, the
Simulink model verifies that the properties of the Simulink.Bus
object in the base workspace matc h the properties of the Simulink
bus signal.
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Type Works with
Scope

Requirements

Bus: <bus
object
name>

Input or
Output

Replace “<bus object name>” in the Type field with the name of
the Simulink.Bus object in the base workspace that defines the
Stateflow structure. For example: Bus: inbus .

Note You are not required to specify a bus signal in your
Simulink model that connects to the Stateflow structure input
or output. However, if you do specify a bus signal, its properties
must match the Simulink.Bus object that defines the Stateflow
structure input or output.

<date type
expression>

Input or
Output

Replace “<data type expression>” in the Type field with an
expression that evaluates to a data type.Enter the expression
according to these guidelines:

• For structure inputs, you can use the Stateflow type operator
to assign the type of your structure based on the type of
another structure defined in the Stateflow chart, as described
in “Defining Structure Types with Expressions” on page 14-13.

Note You cannot use the type operator for structure outputs
(structures of scope Output).

• For structure inputs or outputs, you can enter the name of the
Simulink.Bus object in the base workspace that defines the
Stateflow structure.

7 Click Apply.

Working with Virtual and Nonvirtual Buses
Simulink models support virtual and nonvirtual buses. Virtual buses read
their inputs from noncontiguous memory, while nonvirtual buses read their
inputs from data structures stored in contiguous memory (see “Virtual and
Nonvirtual Buses” in the S imulink documentation).
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Stateflow charts support nonvirtual buses only. When Simulink models
contain Stateflow structure inputs and outputs, a hidden converter block
converts bus signals for use with Stateflow charts, as follows:

• Converts incoming virtual bus signals to nonvirtual buses for Stateflow
structure inputs

• Converts outgoing nonvirtual bus sig nals from Stateflow charts to virtual
bus signals, if necessary

Even though this conversion process all ows Stateflow charts to accept virtual
and nonvirtual buses as input, Stateflo w structures cannot inherit properties
from virtual bus input signals. If the input to a chart is a virtual bus, you
must set the data type mode of the Stateflow bus input to Bus Object, as
described in “Interfacing Stateflow ® Structures with Simulink ® Bus Signals”
on page 14-8.

Defining Local Structures
To define local structures:

1 Create a Simulink bus object in the bas e workspace to define the structure
type for your Stateflow chart.

For information about how to create Simulink bus objects, see
Simulink.Bus in the Simulink Reference documentation.

2 Select Tools > Explore in the Stateflow Editor to open the Model Explorer.

3 In the Model Explorer, add a data o bject as described in “Adding Data
Using the Model Explorer” on page 7-4.

The Model Explorer adds a data object and opens a Properties dialog box in
its right-hand Dialog pane.

4 In the Name field of the Properties dialog box, enter the name of the
structure data.

5 In the Scope field, select Local .

6 In the Type field, select either Bus: <bus object name> , or <data type
expression> , and then specify the expression as follows:
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Type What to Specify

Bus: <bus
object name>

Replace “<bus object name>” in the Type field with the name of the
Simulink.Bus object in the base workspace that defines the Stateflow
structure. For example: Bus: inbus .

<date type
expression>

Replace “<data type expression>” in the Type field with an expression that
evaluates to a data type.You can ent er any of the following expressions:

• Use the Stateflow type operator to assign the type of your structure based
on the type of another structure defined in the Stateflow chart, as described
in “Defining Structure Types w ith Expressions” on page 14-13

• Enter the name of the Simulink.Bus object in the base workspace that
defines the Stateflow structure.

7 Click Apply.

Defining Temporary Structures
You can define temporary structures in Stateflow truth tables, graphical
functions, and Embedded MATLAB™ functions.

To define a temporary structure:

1 Create a Simulink bus object in the bas e workspace to define the structure
type for your Stateflow chart.

For information about how to create Simulink bus objects, see
Simulink.Bus in the Simulink Reference documentation.

2 Select Tools > Explore in the Stateflow Editor to open the Model Explorer.

3 In the Model Explorer, add a data object to your function as described in
“Adding Data Using the Model Explorer” on page 7-4.

The Model Explorer adds a data object and opens a Properties dialog box in
its right-hand Dialog pane.

4 In the Name field of the Properties dialog box, enter the name of the
structure data.
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5 In the Scope field, select Temporary .

6 In the Type field, select either Bus: <bus object name> , or <data type
expression> , and then specify the expression as follows:

Type What to Specify

Bus: <bus
object name>

Replace “<bus object name>” in the Type field with the name of the
Simulink.Bus object in the base workspace that defines the Stateflow
structure. For example: Bus: inbus .

<date type
expression>

Replace “<data type expression>” in the Type field with an expression that
evaluates to a data type.You can ent er any of the following expressions:

• Use the Stateflow type operator to assign the type of your structure based
on the type of another structure defined in the Stateflow chart, as described
in “Defining Structure Types w ith Expressions” on page 14-13

• Enter the name of the Simulink.Bus object in the base workspace that
defines the Stateflow structure.

7 Click Apply.

Defining Structure Types with Expressions
You can define structure types with ex pressions that call the Stateflow type
operator. This operator assigns the t ype of your structure based on the type
of another structure defined in the St ateflow chart. For example, the model
sfbus_demo contains a local struct ure whose type is defined using a type
operator expression, as follows:
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In this case, the structure counterbus_struct derives its type from
structure inbus , which is defined by the Simulink.Bus object COUNTERBUS.
Therefore, the structure counterbus_struct is also defined by the bus object
COUNTERBUS.

To learn how to use the Stateflow type operator, see “Deriving Data Types
from Previously Defined Data” on page 7-48.
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Structure Operations

In this section...

“Indexing Sub-Structures and Fields” on page 14-15

“Assigning Values” on page 14-17

“Getting Addresses” on page 14-18

Indexing Sub-Structures and Fields
You index substructures and fields of Stateflow ® structures by using dot
notation. With dot notation, the first tex t string identifies the parent object,
and subsequent text strings identify the children along a hierarchical path.
When the parent is a structure, its child ren are individual fields or fields that
contain other structures (also called s ubstructures). By default, the names
of the fields of a Stateflow structure match the names of the elements of the
Simulink.Bus object that defines the structure.

For example, consider the following model:

In this example, the following structur es are defined in the Stateflow chart:
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Name of Structure Scope Defined By
Simulink ®.Bus Object

in Input BusObject

out Output BusObject

subbus Local SubBus

The Simulink.Bus objects that define these structures have the following
elements:

By default, Stateflow structures in and out have the same fields — sb , a,
b, and c — as the elements of Simulink.Bus object BusObject . Similarly,
the Stateflow structure subbus has the same field ele as the element of
Simulink.Bus object SubBus. Based on these specifications, the following
table shows how the Stateflow chart resolves symbols in dot notation for
indexing fields of the structures in this example:

Dot Notation Symbol Resolution

in.c Field c of input structure in
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Dot Notation Symbol Resolution

in.a[1] Second value of the vector field a of input structure in

out.sb Substructure sb of output structure out

in.sb.ele[2][3] Value in the third row, fourth column of field ele of
substructure sb of input structure in

subbus.ele[1][1] Value in the second row, second column of field ele
of local structure subbus

Assigning Values
You can assign values to an y Stateflow structure except input structures —
that is, a structures with scope equal to Input. Here are the guidelines for
assigning values to output, loca l, and temporary structures:

Operation Conditions

Assign one structure to another
structure

You must define both structures with
the same Simulink.Bus object in the
base workspace.

Assign one structure to a
substructure of a different structure
and vice versa

You must define the structure with
the same Simulink.Bus object in the
base workspace as the substructure.

Assign a field of one structure to a
field of another structure

The fields must have the same type
and size.

Note In this case, you do not need
to define the Stateflow structures
with the same Simulink.Bus object
in the base workspace.

For example, the following table presents valid and invalid structure
assignments based on the specifica tions for the model sfbus_demo, as
described in “Example of Stateflow ® Structures” on page 14-2:
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Assignment Valid or
Invalid?

Rationale

outbus = inbus; Valid Both outbus and inbus are defined
by the same Simulink.Bus object,
COUNTERBUS.

inbus = outbus; Invalid You cannot write to input structures.

inbus.limits = outbus.limits; Invalid You cannot write to fields of input
structures.

counterbus_struct = inbus; Valid Both counterbus_struct and inbus
are defined by the same Simulink.Bus
object, COUNTERBUS.

counterbus_struct.inputsignal =
inbus.inputsignal;

Valid Both counterbus_struct.inputsignal
and inbus.inputsignal have the
same type and size because they
each reference field inputsignal , a
substructure of the Simulink.Bus object
COUNTERBUS.

outbus.limits.upper_ saturation_limit =
inbus.inputsignal.input;

Valid The field upper_saturation_limit
from limits , a substructure of
COUNTERBUS, has the same type and size
as the field input from inputsignal , a
different substructure of COUNTERBUS.

outbus.limits = inbus.inputsignal; Invalid The substructure limits is defined by a
different Simulink.Bus object than the
substructure inputsignal .

Getting Addresses
When you write custom functions that take structure pointers as arguments,
you must pass the structures by address. To get addresses of Stateflow
structures and structure fields, use the & operator, as in the following
examples:

• &in — Address of Stateflow structure in

• &in.b — Address of field b in Stateflow structure in
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The model sfbus_demo contains a custom C function counterbusFcn that
takes structure pointers as arguments, defined as follows in a custom header
file:

...
extern void counterbusFcn

(COUNTERBUS *u1, int u2, COUNTERBUS *y1, int *y2);
...

To call this function, you must pass addresses to two structures defined by the
Simulink.Bus object COUNTERBUS, as in this example:

counterbusFcn(&counterbus_struct, u2, &outbus, &y2);

See “Example of Stateflow ® Structures” on page 14-2 for a description of the
structures defined in sfbus_demo.
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Integrating Custom Structures in Stateflow ® Charts

You can define custom structures in C code, which you can then integrate
with your Stateflow ® chart for simulation and Real-Time Workshop ® code
generation. Follow these steps:

1 Define your structure in C, creating custom source and header files.

The header file must contain the typedef statements for your structures.
For example, the model sfbus_demo uses custom structures, defined in a
custom header file as follows:

...
#include "tmwtypes.h"

typedef struct {
int input;

} SIGNALBUS;

typedef struct {
int upper_saturation_limit;
int lower_saturation_limit;

} LIMITBUS;

typedef struct {
SIGNALBUS inputsignal;
LIMITBUS limits;

} COUNTERBUS;
...

2 Define a Simulink.Bus object in the base workspace that matches each
custom structure typedef .

For example, the model sfbus_demo, defines the following Simulink.Bus
objects to match each typedef in the custom header file:
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3 Open the Bus Editor and for each bus o bject in the base workspace defined
in custom code, add the name of the header file that contains the matching
typedef .

For example, the model sfbus_demo s pecifies the custom header file
counterbus.h for the bus object COUNTERBUS:
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4 Configure y our Stateflow chart to include your custom C code, as follows:
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To Include
Custom C
Code:

Do this:

In code
generated for
simulation

Follow these steps:
1 In the Stateflow Editor, select Tools > Open

Simulation Target.

The Simulation Target dialog appears.
2 In the Simulation Target dialog, select the Custom

Code pane.
3 Specify your custom code in the tabbed panes.

For more information, see Chapter 18, “Building
Targets”.

In code
generated
for real-time
applications

Follow these steps:
1 Open the Simulink ® model that contains the Stateflow

chart that uses your custom C structures.

The Model Editor appears.
2 In the Model Editor, select

Simulation > Configuration Parameters.

The Configuration Para meters dialog appears.
3 In the Configuration Parameters dialog, select

Real-Time Workshop > Custom Code in the Select
tree.

Custom code options appear in the right pane.
4 Follow instructions in “Configuring Custom Code” in

the Real-Time Workshop User’s Guide.

5 Build your model and fix errors (see “D ebugging Structures” on page 14-24).

6 Run your model.
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Debugging Structures

You debug structures as you would other Stateflow ® chart data, as described
in Chapter 19, “Debugging and Testing”. Using the Stateflow Debugger, you
can examine the values of structure fields during simulation, either from
the graphical debugging window or f rom the command line, as described in
“Watching Data Values with Debuggers” on page 19-32. To view the values
of structure fields at the command line, use dot notation to index into the
structure, as described in “Indexing Su b-Structures and Fields” on page 14-15.

14-24



15

Stateflow ® Design Patterns

This chapter describes Stateflow ® patterns that you can use to address design
challenges that often occur when dev eloping and implementing embedded
software. Think of these design patterns as templates that you can customize
for your own applications.

Debouncing Signals (p. 15-2) Illustrates how to design a state
machine with switch logic that is
resilient to transient signals

Scheduling Execution of Simulink ®

Subsystems (p. 15-7)
Describes three design patterns for
scheduling algorithms in your state
machine

Implementing Dynamic Test Vectors
(p. 15-18)

Shows how to create test vectors
that change dynamically during
simulation
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Debouncing Signals

In this section...

“Why Debounce Signals” on page 15-2

“The Debouncer Model” on page 15-3

“Key Behaviors of Debouncer Chart” on page 15-4

“Running the Debouncer” on page 15-5

Why Debounce Signals
When a switch opens and closes, the swi tch contacts can bounce off each other
before the switch completely transit ions to an on or off state. The bouncing
action can produce transient signals that do not represent a true change of
state. Therefore, when modeling switch logic, it is important to filter out
transient signals using a process called debouncing.

For example, if you model a controller in a Stateflow ® chart, you do not
want your switch logic to overwork the controller by turning it on and off
in response to every transient signal it receives. Instead, you can design a
Stateflow debouncer that uses temporal logic to determine whether the switch
is really on or off.
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The Debouncer Mo del
The model sf_deb ouncer illustrates a design pattern that uses temporal logic
to isolate trans ient signals.
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Key Behaviors of Debouncer Chart
The key behaviors of the Debouncer chart are:

• “Intermediate Debounce State Isolates Transients” on page 15-4

• “Temporal Logic Determines True State” on page 15-5

Intermediate Debounce State Isolates Transients
In addition to the states On and Off, the Debouncer chart contains an
intermediate state called Debounce. The Debounce state isolates transient
inputs by checking whether the signals retain their positive or negative
values, or fluctuate between zero cro ssings over a prescribed period of time.
The logic works like this:

If the input signal... Then this state... Transitions to... And the...

Retains positive value
for 100 ticks

Debounce.On On Switch turns on

Retains negative value
for 100 ticks

Debounce.Off Off Switch turns off

Fluctuates between
zero crossings for 300
ticks

Debounce Off.Fault

Note The Debounce
to Off.Fault transition
comes from a
higher level in the
chart hierarchy
and overrides the
transitions from
the Debounce.Off
and Debounce.On
substates.

Chart isolates the
input as a transient
signal and gives it
time to recover
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Temporal Logic Determines True State
The debouncer design pattern uses temporal logic to:

• Determine whether the input signal is normal or transient

• Give transient signals time to re cover and return to normal state

Using Event-Based Temporal Logic. The debouncer design uses the
after( n,tick) operator to implement event-based temporal logic (see
“Operators for Event-Based Temporal Logic” on page 9-58). The keyword tick
specifies and implicitly generates a local event when the chart awakens (see
“Using Implicit Events” on page 8-21).

Using Absolute-Time Temporal Logic. As an alternative to event-based
logic, you can apply absolute-time temporal logic to determine true state in
the Debouncer chart by using the after( n, sec) operator (see “Operators
for Absolute-Time Temporal Logic” on page 9-64). The keyword sec defines
simulation time that has elapsed since activation of a state.

The Error Generator block in the sf_debouncer model generates a pulse
signal every 0.001 second. Therefore , to convert the event-based logic
specified in the Debouncer chart to absolute time, multiply the n argument
by 0.001, as follows:

Event-Based Logic Absolute Time-Based Logic

after ( 100, tick ) after ( 0.1, sec )

after ( 300, tick ) after ( 0.3, sec )

after ( 1000, tick ) after ( 1, sec )

Running the Debouncer
To run the sf_debouncer model, follow these steps:

1 Open the model by typing sf_debouncer at the MATLAB ® command
prompt.

2 Open the Stateflow chart Debouncer and the Scope block.

3 Simulate the chart.
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The scope shows how the debouncer isolates transient signals from the
noisy input signal.

Note To debounce the signals using absolute time, change the Debouncer
chart as described in “Using Absolute-Time Temporal Logic” on page 15-5
and simulate the chart again. You should get the same results.
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Scheduling Execution of Simulink ® Subsystems

In this section...

“When to Implement Sche dulers Using Stateflow ® Charts” on page 15-7

“Types of Scheduler Patterns” on page 15-7

“Scheduling Multiple Subsystems in a Single Time Step Using a Ladder
Logic Scheduler” on page 15-8

“Scheduling One Subsystem in a Single Time Step Using a Loop Scheduler”
on page 15-12

“Scheduling Subsystems to Execute at Specific Times Using a Temporal
Logic Scheduler” on page 15-15

When to Implement Schedulers Using Stateflow ®

Charts
Use Stateflow ® charts to schedule the order of execution of Simulink ®

subsystems explicitly in a model. Stateflow schedulers extend control
of subsystem execution in a Simulink model, which determines order of
execution implicitly based on block connectivity v ia sample time propagation.

Types of Scheduler Patterns
You can implement the following types of schedulers using Stateflow charts:

Scheduler
Design
Pattern

Description

Ladder logic
scheduler

Schedules multiple Simulink subsystems to execute in a
single time step

Loop
scheduler

Schedules one Simulink subsystem to execute multiple
times in a single time step

Temporal
logic
scheduler

Schedules Simulink subsystems to execute at specific times
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Scheduling Mult iple Subsystems in a Single Time Step
Using a Ladder Lo gic Scheduler
The ladder logic scheduler design pattern allows you to specify the order in
which multiple S imulink subsystems execute in a single time step. The model
sf_ladder_log ic_scheduler illustrates this design pattern.
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Key Behaviors of Ladder Logic Scheduler
The key behaviors of the ladder logic scheduler are:

• “Function-Call Output Events Trigger Multiple Subsystems” on page 15-9

• “Flow Graph Determines Order of Execution” on page 15-9

Function-Call Output Events Trigger Multiple Subsystems. In a given
time step, the Stateflow chart broadcasts a series of function-call output
events to trigger the execution of three function-call subsystems — A1, A2,
and A3 — in the Simulink model in an order determined by the ladder logic
scheduler. Here is the sequence of activities during each time step:

1 The Simulink model activates the Stateflow chart Edge to Function at a
rising edge of the 1-millisecond pulse generator.

2 The Edge to Function chart broadcas ts the function-call output event call
to activate the Stateflow ch art Ladder Logic Scheduler.

3 The Ladder Logic Scheduler chart broadcasts function-call output events
to trigger the function-call subsystems A1, A2, and A3, based on the values
of inputs u1 and u2 (see “Flow Graph Determin es Order of Execution” on
page 15-9).

Flow Graph Determines Order of Execution. The Ladder Logic Scheduler
chart uses Stateflow flow charting cap abilities to implement the logic that
schedules the execution of the Simulink function-call subsystems. The chart
contains a Stateflow flow graph tha t resembles a ladder diagram. Each
rung in the ladder represents a rule or condition that determines whether to
execute one of the Simulink function-cal l subsystems. The flow logic evaluates
each condition sequentially, which has the effect of scheduling the execution
of multiple subsystems within the same time step. The chart executes each
subsystem by using the send action to broadcast a function-call output event
(see “Directed Event Broadcasting Using send” on page 9-53).

Here is the sequence of activities that occurs in the Ladder Logic Scheduler
chart in each time step:

1 Assign output y to input u1.

2 If u1 is positive, send function-call output event A1 to the Simulink model.
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The subsystem connected to A1 executes. This subsystem multiplies its
input by a gain of 2 and passes this value back to the Stateflow Ladder
Logic Scheduler chart as input u2. Control returns to the next condition in
the Ladder Logic Scheduler.

3 If u2 is positive or zero, send fun ction-call output event A2 to the Simulink
model.

The subsystem connected to A2 executes. This subsystem outputs its input
value unchanged. Control returns to the next condition in the Ladder
Logic Scheduler.

4 If u1 and u2 are positive, send function-call output event A3 to the Simulink
model.

The subsystem connected to A3 executes. This subsystem multiplies its
input by a gain of 1.

5 The Ladder Logic Scheduler chart goes to sleep.

Running the Ladder Logic Scheduler
To run the sf_ladder_logic_scheduler model, follow these steps:

1 Open the model by typing sf_ladder_logic_scheduler at the MATLAB ®

command prompt.

2 Open the Stateflow chart Ladder Log ic Scheduler and the Scope block.

3 Simulate the chart.
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The scope shows how output y changes, depending on which subsystems
the Ladder Logic Scheduler chart calls during each time step.
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Scheduling One S ubsystem in a Single Time Step
Using a Loop Sche duler
The loop scheduler design pattern allows you to schedule one Simulink
subsystem to execute multiple times in a single time step. The model
sf_loop_sched uler illustrates this design pattern.
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Key Behaviors of Loop Scheduler
The key behaviors of the loop scheduler are:

• “Function-Call Output Event Triggers Subsystem Multiple Times” on
page 15-13

• “Flow Graph Implements For Loop” on page 15-13

Function-Call Output Event Triggers Subsystem Multiple Times. In a
given time step, the Stateflow chart bro adcasts a function-call output event to
trigger the execution of the function-call subsystem A1 multiple times in the
Simulink model. Here is the sequence of activities during each time step:

1 The Simulink model activates the Stateflow chart Edge to Function at a
rising edge of the 1-millisecond pulse generator.

2 The Edge to Function chart broadcas ts the function-call output event call
to activate the Stateflow chart Looping Scheduler.

3 The Looping Scheduler chart broadcasts a function-call output event from a
for loop to trigger the function-call subsystem A1 multiple times (see “Flow
Graph Implements For Loop” on page 15-13).

Flow Graph Implements For Loop. The Looping Scheduler chart uses
Stateflow flow charting capabilities to implement a for loop for broadcasting
an event multiple times in a single time step. The chart contains a Stateflow
flow graph that uses a local data variable i to control the loop. At each
iteration, the chart updates output y and issues the send action to broadcast a
function-call output event that executes subsystem A1. Subsystem A1 uses
the value of y to recompute its output and send the value back to the Looping
Scheduler chart.

Running the Loop Scheduler
To run the sf_loop_scheduler model, follow these steps:

1 Open the model by typing sf_loop_scheduler at the MATLAB command
prompt.

2 Open the Stateflow chart Looping Scheduler and the Scope block.
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3 Simulate the chart.

The scope displays the value of y at each time step.

In this ex ample, the Looping Scheduler chart executes the for loop 10 times
in each ti me step. During each iteration:

1 The chart increments y by 1 (the constant value of input u1).

2 The chart broadcasts a function-call output event that executes subsystem
A1.

3 Subsystem A1 multiplies y by a gain of 1.

4 Control returns to the chart.
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Scheduling Subsystems to Execute at Specific Times
Using a Temporal Logic Scheduler
The temporal logic scheduler design pattern allows you to schedule
Simulink subsystems to execute at specified times. The model
sf_temporal_logic_scheduler illustrates this design pattern.
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Key Behaviors of Temporal Logic Scheduler
The Temporal Logic Scheduler chart contains two states that schedule the
execution of the function-call subsystems A1, A2, and A3 at different rates,
as determined by the temporal logic operator every (see “Operators for
Event-Based Temporal Logic” on page 9-58).

In the FastScheduler state, the every operator schedules function calls as
follows:

• Sends A1 every time the function-call output event call wakes up the chart

• Sends A2 at half the base rate

• Sends A3 at one-quarter the base rate

The SlowScheduler state s chedules function calls less frequently — at 8, 16,
and 32 times slower than the base rate. The chart switches between fast and
slow executions after every 100 invocations of the call event.

Running the Temporal Logic Scheduler
To run the sf_temporal_logic_scheduler model, follow these steps:

1 Open the model by typing sf_temporal_logic_scheduler at the MATLAB
command prompt.

2 Open the Stateflow chart Temporal L ogic Scheduler and the Scope block.

3 Simulate the chart.
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The scope illustrates the different rates of execution.
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Implementing Dynamic Test Vectors

In this section...

“When to Implement Test Vectors Using Stateflow ® Charts” on page 15-18

“A Dynamic Test Vector Chart” on page 15-19

“Key Behaviors of the Test Vector Chart and Model” on page 15-21

“Running the Model with Stateflow ® Test Vectors” on page 15-24

When to Implement Test Vectors Using Stateflow ®

Charts
Use Stateflow ® charts to create test vectors that change dynamically during
simulation, based on the state of the system you are modeling.

For example, suppose you want to test an automatic car transmission
controller in the situation where a car i s coasting. To achieve a coasting state,
a driver accelerates until the transmissi on shifts into the highest gear, then
eases up on the gas pedal. To test this scenario, you could generate a signal
that represents this behavior, as in t he following Signal Builder block.
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However, this approach has limitations. The signal changes value based
on time, but cannot respond dynamically to changes in the system that
are not governed by time alone. For e xample, how does the signal know
when the transmission shifts into the highest gear? In this case, the signal
assumes that the shift always occurs at time 5 because it cannot test for other
deterministic conditions such as t he speed of the vehicle. Moreover, you
cannot change the signal based on outputs from the model.

By contrast, you can use Stateflow charts to develop test vectors that use
conditional logic to evaluate and res pond to changes in system state as they
occur. For example, to test the coasting scenario, the chart can evaluate
an output that represents the gear r ange and reduce speed only after the
transmission shifts to the highest gear . That is, the car slows down as a direct
result of the gear shift and not at a predetermined time. For a detailed look at
this type of chart, see “A Dynamic Test Vector Chart” on page 15-19.

A Dynamic Test Vector Chart
The following model of an automatic tran smission controller uses a Stateflow
chart to implement test vectors that r epresent brake, throttle, and gear
shift dynamics. The chart, called Dynamic Test Vectors, interfaces with the
Simulink ® model as shown.
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The chart models the dynamic relation ship between the brake and throttle to
test four driving scenarios. Each s cenario is represented by a state.
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In some of these scenarios, the thro ttle changes in resp onse to time; in
other cases, it responds to gear selection, an output of the Stateflow chart
Shift_logic. The Shift_logic chart d etermines the gear value based on the
speed of the vehicle.

Note This model is based on the Simulink demo model sldemo_autotrans .

Key Behaviors of the Test Vector Chart and Model
The key behaviors of the test vector chart and model are:

• “Chart Represents Test Cases as States” on page 15-21

• “Chart Uses Conditional Logic to Respond to Dynamic Changes” on page
15-21

• “Model Provides an Interface for Selecting Test Cases” on page 15-22

Chart Represents Test Cases as States
The Dynamic Test Vectors chart repres ents each test case as an exclusive
(OR) state. Each state manipulates brake and throttle values in a unique way,
based on the time and gear inputs to the chart.

The chart determines which test to execute from the value of a constant signal
case , output from the Signal Builder block. Each test case corresponds to a
unique signal value.

Chart Uses Conditional Logic to Respond to Dynamic Changes
The Dynamic Test Vectors chart uses conditions on transitions to test time
and gear level, and then adjusts bra ke and throttle accordingly for each
driving scenario. Stateflow charts pro vide many constructs for testing system
state and responding to changes, including:

• Conditional logic (see “State Action Types” on page 9-3 and “Transition
Action Types” on page 9-8)

• Temporal logic (see “Using Temporal Logic in State Actions and
Transitions” on page 9-57)
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• Change detection operators (see “Using Change Detection in Actions” on
page 9-75)

• MATLAB ® functions (see “Using MATLAB ® Functions and Data in Actions”
on page 9-34)

For more information, see Chapter 9, “Using Actions in Stateflow ® Charts”.

Model Provides an Interface for Selecting Test Cases
The model uses a Signal Builder block t o provide an interface for selecting
test scenarios to simulate.
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Selecting and Running Test Cases. In the Signal Builder, select and run
test cases as follows:
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To Test: Do This:

One case Select the tab that corresponds to the
driving scenario you want to test and
click the Start simulation button:

All cases and produce a model
coverage report ( requires a
Simulink® Verification and
Validation™ software license)

Click the Run all and produce
coverage button:

The Signal Builder block sends to the Dynamic Test Vectors chart one or more
constant signal values that correspond to the driving scenarios you select. The
chart uses these values to activate the appropriate test cases.

Running the Model with Stateflow ® Test Vectors

To run the sf_test_vectors model, follow these steps:

1 Open the model by typing sf_test_vectors at the MATLAB command
prompt.

2 Open the Stateflow chart Dynamic Test Vectors, the Signal Builder block,
and the Scope block.

3 Select and simulate a driv ing scenario from the Signal Builder block, as
described in “Selecting and Running Test Cases” on page 15-23.

The scope illustrates the interactio n between speed and throttle for the
selected scenario.
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Driving
Scenario

Scope Display Description

Passing
Maneuver

Driver accelerates
rapidly. At t = 15 seconds,
steps the throttle to 100.
With continued heavy
throttle, the vehicle
accelerates to about 100
MPH and then shifts into
overdrive at about t =
21 seconds. The vehicle
cruises along in fourth
gear for the remainder of
the simulation.

Gradual
Acceleration

Driver maintains a
slow but steady rate of
acceleration.
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Driving
Scenario

Scope Display Description

Hard Braking Driver accelerates until
the transmission shifts to
third gear, then removes
foot from the gas pedal.
After a short delay, moves
foot to the brake pedal
and pushes hard.

Coasting Driver accelerates until
transmission shifts to
highest gear, then eases
up on the gas.
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Truth Table Functions

What Is a Truth Table? (p. 16-3) Describes the truth tables that
Stateflow ® truth table functions
implement

Language Options for Stateflow ®

Truth Tables (p. 16-5)
Describes the language options for
specifying conditions, actions, and
decisions in Stateflow truth tables

Workflow for Using Truth Tables
(p. 16-7)

Describes the recommended steps
for building and troubleshooting
truth tables

Building a Simulink ® Model with a
Stateflow ® Truth Table (p. 16-8)

Shows you how to create a Simulink ®

model that calls and executes a
Stateflow chart with a truth table

Programming a Truth Table
(p. 16-23)

Describes procedures for
programming a truth table

Debugging a Truth Table (p. 16-44) Shows you how to use the Parser
and Debugging window during
simulation to debug a truth table

Correcting Overspecified and
Underspecified Truth Tables
(p. 16-54)

Describes over- and underspecified
truth tables that error checking
detects

Model Coverage for Truth Tables
(p. 16-57)

Describes and interprets the results
of an example model coverage report
for a truth table
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How Stateflow ® Software
Implements Truth Tables (p. 16-62)

Describes how generated graphical
functions implement truth tables

Truth Table Editor Operations
(p. 16-70)

Describes the editing operations you
can use in the Truth Table Editor
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What Is a Truth Table?

Truth table functions implement logical decision-making behavior that
you call in an action language. Stateflow ® truth tables contain conditions,
decisions, and actions arranged as follows:

Condition Decision 1 Decision 2 Decision 3
Default
Decision

x == 1 T F F -

y == 1 F T F -

z == 1 F F T -

Action t = 1 t = 2 t = 3 t = 4

Each of the cond itions entered in the Condition column must evaluate to
true (nonzero value) or false (zero value). O utcomes for each condition are
specified as T (true), F (false), or - (true or fals e). Each of the decision columns
combines an outcome for each condition with a logical AND into a compound
condition, t hat is referred to as a decision.

You evaluate a truth table one decision at a tim e, starting with Decision 1. If
one of the decisions is true, you perform its ac tion and truth table execution is
complete. For example, if conditions 1 and 2 are false and condition 3 is true,
Decision 3 i s true and the variable t is set equal to 3. The remaining decisions
are not test ed and evaluation of the truth table is finished.

The last dec ision in the preceding example, Default Decision, covers all
possible remaining decisions. If Decisions 1, 2, and 3 are false, then the
Default De cision is automatically true and its action (t = 4) is executed. You
can see this behavior when you examine the fo llowing equivalent pseudocode
for the eva luation of the preceding truth table example:

Description Pseudocode

Decision 1
Decision 1 Action if ((x == 1) & !(y == 1) & !(z == 1))

t = 1;
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Description Pseudocode

Decision 2
Decision 2 Action elseif (!(x == 1) & (y == 1) !(z == 1))

t = 2;

Decision 3
Decision 3 Action elseif (!(x == 1) & !(y == 1) (z == 1))

t = 3;

Default Decision
Default Decision Action else

t = 4;
endif
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Language Options for Stateflow ® Truth Tables

In this section...

“Stateflow ® Classic Truth Tables” on page 16-5

“Embedded MATLAB™ Truth Tables” on page 16-5

“Selecting a Language for Stateflow ® Truth Tables” on page 16-6

“Migrating from Stateflow ® Classic to Embedded MATLAB™ Truth Tables”
on page 16-6

Stateflow ® Classic Truth Tables
Using Stateflow ® Classic truth tables, you can s pecify conditions and actions
using the Stateflow action language, which supports basic C constructs and
provides access to MATLAB ® functions using the ml namespace operator or
ml function. For more information about the Stateflow action language, see
Chapter 9, “Using Actions in Stateflow ® Charts”.

Stateflow Classic mode is the default setting for Stateflow truth tables.

Embedded MATLAB™ Truth Tables
You can specify conditions and actions for Embedded MATLAB™ truth tables
by using Embedded MATLAB action language, a restricted subset of the
MATLAB language that provides opti mizations for code generation.

Embedded MATLAB truth tables offer several advantages over Stateflow
Classic truth tables:

• The Embedded MATLAB language subset provides a richer syntax for
specifying control flow logic in truth table actions. It provides for loops,
while loops, nested if statements, and switch statements.

• You can call MATLAB functions directly in truth table actions. Also, you
can call Embedded MATLAB library functions (for example MATLAB sin
and fft functions) and generate code for these functions using Real-Time
Workshop ® code generation software.
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• You can create temporary or persistent variables during simulation or in
code directly without having to d efine them in the Model Explorer.

• Embedded MATLAB language subset uses a better debugging scheme. It
is easier to set breakpoints on lines o f code, step through code, and watch
data values through tool tips.

• You can use persistent variables in trut h table actions. This feature allows
you to define data that persists across multiple calls to the truth table
function during simulation.

• You get more comprehensive model coverage. Embedded MATLAB truth
tables generate coverage repo rts on branches in conditions and actions.
Stateflow Classic truth tables provide c overage reports for conditions only.
For more information, see “Model Cove rage for Truth Tables” on page 16-57.

Selecting a Language for Stateflow ® Truth Tables
To specify an action language for your Stat eflow truth table, follow these steps:

1 Double-click the truth table to open the Truth Table Editor.

2 Select Language from the Settings menu.

3 Choose a language from the drop-down menu.

Migrating from Stateflow ® Classic to Embedded
MATLAB™ Truth Tables
When you migrate from a Stateflow Cl assic truth tabl e to an Embedded
MATLAB truth table, you must verify that the code used to program the
actions conforms to Embedded MATLAB syntax. Between the two action
languages, these differences exist:

• In the Embedded MATLAB action langu age, indices are one-based; in the
Stateflow action language, you can specify the first index.

• In the Embedded MATLAB action language, the expression for not equal to
is ~=; in the Stateflow action language, the equivalent syntax is != .

You can check for syntax errors by using the Run Diagnostics command in
the Truth Table Editor, as described in “ Checking Truth Tables for Errors” on
page 16-44.
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Workflow for Using Truth Tables

Here is the recommended workflow for using truth tables in Simulink ®

models:

1 Add a truth table to your Simulink model using one of the methods
described in “Building a Simulink ® Model with a Stateflow ® Truth Table”
on page 16-8.

2 Specify properties of the truth table function, as described in “Specifying
Properties of Truth Tabl e Functions in Stateflow ® Charts” on page 16-14.

3 Select an action language and program the conditions and actions in the
truth table, as described in “Programming a Truth Table” on page 16-23.

4 Debug the truth table for syntax errors and for error during simulation, as
described in “Debugging a Truth Table” on page 16-44.

5 Check coverage of conditions and acti ons in the truth table, as described in
“Model Coverage for Truth Tables” on page 16-57.

6 Simulate the model and check the generated content for the truth tables,
as described in “How Stateflow ® Software Implements Truth Tables” on
page 16-62.
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Building a Simulink ® Model with a Stateflow ® Truth Table

In this section...

“Methods for Adding Truth Tables to Simulink ® Models” on page 16-8

“Adding a Stateflow ® Block that Calls a Truth Table Function” on page 16-8

Methods for Adding Truth Tables to Simulink ® Models
There are several ways to add a Stateflow ® truth table to a Simulink ® model:

Procedure Action Languages
Supported

How To Do It

Add a Truth Table block
directly to the model

Embedded MATLAB™
only

See Truth Table.

Add a Stateflow block
that calls a truth table
function

Stateflow Classic and
Embedded MATLAB

See “Adding a
Stateflow ® Block that
Calls a Truth Table
Function” on page 16-8.

Adding a Stateflow ® Block that Calls a Truth Table
Function
This section describes how to add a Stateflow block to your Simulink model,
and then create a chart that calls a truth table function. These topics are
covered:

• “Creating a Simulink ® Model” on page 16-9

• “Creating a Stateflow ® Truth Table” on page 16-11

• “Specifying Properties of Tru th Table Functions in Stateflow ® Charts” on
page 16-14

• “Calling a Truth Table in a Stateflow ® Action” on page 16-16

• “Creating Truth Table Data in Stateflow ® Charts and Simulink ® Models”
on page 16-19
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Once you build a model in this section, finish it by programming the truth
table with its behavior in “Programming a Truth Table” on page 16-23.

Creating a Simulink ® Model
To execute a truth table, you first need a S imulink model that calls a Stateflow
block. Later, you will create a Stateflow chart for the Stateflow block that
calls a truth table function. In this section, you create a Simulink model that
calls a Stateflow block with the following procedure:

1 At the MATLAB ® prompt, enter the following command:

sfnew

An untitled Simulink model with a Stateflow block appears.

2 Click and drag the Stateflow block to the center of the Simulink window.
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This action m akes room for the blocks you add in the steps that follow.

3 In the Simulink window, select View > Library Browser.

The Simulink Library Browser window opens with the Simulink node
expanded.

4 Under the Simulink node, select the Sources library.

The right pane of the Simulink Library Browser window displays the block
members of the Sources library.

5 From the right pane of the Simulink Library Browser window, click and
drag the Constant block to the left of t he Stateflow block in the Simulink
model.

6 Add two mor e Constant blocks to the left of the Chart block, and add a
Display bl ock (from the Sinks library) to the right of the Chart block.

7 In the Simulink model window, double-click the middle Constant block.

8 In the resulting Block Parameters dialog, change the Constant value field
to 0 and click OK to close the dialog.

9 In the Simu link model window, double-click the bottom Constant block.

10 In the resulting Block Parameters dialog, change the Constant value field
to 0 and click OK to close the dialog.

Your model should now have the following appearance:
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11 In the Simulink model window, from the Simulation menu, select
Configuration Parameters.

The Configuration Parameters dialog opens.

12 Set

• Solver Options Type field to Variable-step

• Stop Time to inf

13 Click OK to accept these values and close the Configuration Parameters
dialog.

14 Save the model as first_truth_table.mdl .

Creating a Stateflow ® Truth Table
You created a Simulink model in “Creating a Simulink ® Model” on page 16-9
that contains a Stateflow block. Now you need to open the Stateflow chart for
the block and specify a truth table for it in these steps:

1 In the Simulink model, double-click the Stateflow block named Chart.

An empty Stateflow Editor appears.
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2 In the Stateflow Editor, click the Truth Table drawing tool:

3 Move your pointer into the empty chart area and notice that it appears
in the shape of a box.

4 Click to place a new truth table as shown.
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A shaded box appears with the title truthtable and a flashing text cursor
in the middle of the box.

5 Enter the s ignature label

t = ttable(x,y,z)

and click o utside the truth table box.
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You must label a truth table function with its signature. Use the following
syntax:

[ return_val1, return_val2,...] = function_name ( arg1, arg2,...)

You can specify multiple return values and multiple input arguments, as
shown in the syntax. Each return value and input argument can be a
scalar, vector, or matrix of values.

Note For functions with only one return value, you can omit the brackets
in the signature label.

Specifyi ng Properties of Truth Table Functions in Stateflow ®

Charts
After you add a truth table function to a Stateflow chart, you can specify its
properti es by following these steps:

1 Right-cl ick the truth table function box.

2 Select Properties from the context menu.
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The Truth Table properties dialog box for the truth table function appears.

The fields in the Truth Table properties dialog box are as follows:

Field Description

Name Function name; read-only; click this hypertext link to
bring the truth table function to the foreground in
its native Stateflow chart.

Breakpoints Select Function Call to set a breakpoint to pause
execution during simulation when the truth table
function is called.
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Field Description

Function Inline
Option

This option controls the inlining of the truth table
function in generated code through the following
selections:

• Auto
Decides whether or not to inline the truth table
function based on an internal calculation.

• Inline
Inlines the truth table function as long as it is
not exported to other charts and is not part of a
recursion. A recursion exists if the function calls
itself either directly or in directly through another
called function.

• Function
Does not inline the function.

Label You can specify the signature label for the function
through this field. See “Creating a Stateflow ® Truth
Table” on page 16-11 for more information.

Description Textual description/comment.

Document Link Enter a URL address or a general
MATLAB command. Examples are
www.mathworks.com , mailto:email_address ,
and edit/spec/data/speed.txt .

Calling a Truth Table in a Stateflow ® Action
In “Creating a Stateflow ® Truth Table” on page 16-11, you created the truth
table function ttable with the signature

t = ttable(x,y,z)

Now you need to specify a call to the t ruth table function in the Stateflow
chart. Later, when the chart executes during simulation, it calls the truth
table.
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You can call truth table functions from the actions of any state or transition.
You can also call truth tables from oth er functions, including graphical
functions and other truth tables. Also, if you export a truth table, you can call
it from any Stateflow chart in the model.

Use these steps to call the ttable function from the default transition of its
own Stateflow chart.

1 Select the Default Transition button from the drawing toolbar.

2 Move your pointer to a location left of the truth table function and notice
that it appears in the shape of a downward-pointing arrow.

3 Click to place a default transiti on into a terminating junction.

4 Click the question mark character (?) that appears on the highlighted
default transition.

A blinking cursor in a text field appears for entering the label of the default
transition.
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5 Enter the text

{d = ttable(a,b,c);}

and click outside the transition label to finish editing it.

You might want to adjust the label’s position by clicking and dragging it
to a new location. The finished Stateflow chart should have the following
appearance:

The label on the default transition th at you entered provides a condition
action that calls the truth table with arguments and a return value. When
the Simulink model triggers the State flow block during simulation, the
default transition is taken and a call to the truth table ttable is made.

The call to the truth table in Stateflow action language must match the
truth table signature. This means that the type of the return value d
must match the type of the signature return value t , and the type of the
arguments a, b, and c must match the type of the signature arguments x, y,
and z. You ensure this with a later step in this section when you create the
data that you use in the Stateflow chart.

6 From the File menu, select Save to save the model.
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Creating Truth Table Data in Stateflow ® Charts and Simulink ®

Models
When you create a truth table with its own signature, you specify data for
it in the form of a return value ( t ) and argument values ( x, y, z). When
you specify a call to a truth table, as you did in “Calling a Truth Table in a
Stateflow ® Action” on page 16-16, you specify data that you pass to the return
and argument values of the truth table ( d, a, b, and c). Now you must define
this data for the Stateflow chart in these steps:

1 Double-click the truth table to open the Truth Table Editor.

2 In the Truth Ta ble Editor, select the Edit Data/Ports button .

The Model Explorer appears.

In the Model Hierarchy pane, the node for the function ttable is
highlig hted, and the Contents pane displays the output (t) and inputs
(x, y , z) for ttable . By default, these data are defined as scalars of type
double . If you want to redefine these data with a different array size and
type, y ou do it in the Model Explorer. However, no changes are necessary
for thi s example.

Notice also in the Model Hierarchy pane that the node above the function
ttable is Chart , the name of the Stateflow chart that contains the truth
table ttable .

3 In the Model Hierarchy pane, select Chart.

16-19



16 Truth Table Functions

Notice that Chart contains no data in the Contents pane. You need to add
the return and argument data used in calling ttable .

4 Select Add > Data.

A scalar data is added to the chart in the Contents pane of the Model
Explorer with the default name data . This data matches argument x in
type and size.

Tip To verify that the propert ies match, right-click data in the Contents
pane and select Properties. The property sheet shows that the type is
double and the size is scalar (the default when there is no entry in the
Size field).

5 In the Contents pane, double-click the entry data in the Name column.

A small text field opens with the name data highlighted.

6 In the text field, change the name to a and click Enter.

7 Click the entry Local under the Scope column.

A drop-down menu of selectable scopes appears with Local selected.

8 Select Input .

The scope Input means that the Simulink model provides the value for
this data, which it passes to the Stateflow chart through an input port on
the Stateflow block.

You should now see the new data input a in the Contents pane.

9 Repeat steps 3 thro ugh 7 to add the data b and c with the scope Input ,
and data d with a scope of Output .

The scope Output means that the Stateflow chart provides this data and
passes it to the Simulink model through an output port on the Stateflow
block.
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You should now see the following data in the Model Explorer.

The data a, b, c, and d match their counterparts x, y, z, and t in the truth
table signature in size (scalar) and t ype (double), but have sources outside
the Stateflow block. Notice that input ports for a, b, and c, and an output
port for d appear on the Stateflow bl ock in the Simulink model.

10 Complete connections to the Simulink blocks as shown.
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11 To save the model, select File > Save.
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Programming a Truth Table

Programming a Truth Table

In this section...

“Opening a Truth Table for Editing” on page 16-23

“Selecting An Action Language” on page 16-24

“Entering Truth Table Conditions” on page 16-24

“Entering Truth Table Decisions” on page 16-26

“Entering Truth Table Actions” on page 16-28

“Assigning Truth Table Actions to Decisions” on page 16-36

“Adding Initial and Final Actions” on page 16-41

Opening a Truth Table for Editing
After you create and label a truth table in a Stateflow ® chart, you specify
its logical behavior. Double-click t he truth table function to open the Truth
Table Editor.

The Truth Table Editor is titled in <model name>/<truth table name> format
in its header. An empty default truth table contains a Condition Table and

16-23



16 Truth Table Functions

an Action Table, each with one row. The Condition Table also contains a
single decision column, D1, and a single action row.

Selecting An Action Language
Select the language you want to use for programming conditions and actions
in your truth table by following these steps:

1 In the Truth Table Editor, select Language from the Settings menu.

2 Choose a language from the drop-down menu.

Entering Truth Table Conditions
Conditions are the starting point for specifying logical behavior in a truth
table. You open the truth table ttable for editing in “Opening a Truth Table
for Editing” on page 16-23. In this topic, you start programming the behavior
of ttable by specifying its conditions.

You enter conditions in the Condition column of the Condition Table. For
each condition that you enter, you can also enter an optional description in
the Description column. Use the following procedure to enter the conditions
of the truth table ttable :

1 Click anywhere in the Condition Table to select it.

2 Click the Append Row button twice.

Two rows are appended to the bottom of the Condition Table.

3 Click and drag the bar separating the Condition Table and the Action
Table panes down to enlarge the Condition Table pane.

4 In the Condition Table, click the top cell of the Description column.

The cell is h ighlighted and a flashing text cursor appears in the cell.

5 Enter the following text:

x is equal to 1

16-24



Programming a Truth Table

Condition descriptions are optional, but appear as comments in the
generated code for the truth table.

6 Press the Tab key to select the next cell on the right in the Condition
column.

Tip You can use Shift+Tab to select the next cell on the left.

7 In the first row cell of the Condition column, enter the following text:

XEQ1:

This text is an optional label you can include with the condition. In the
generated code for a truth table, the c ondition label becomes the name of a
temporary data variable that stores the outcome of its condition. If you do
not enter a label, a temporary variable appears.

Note Condition labels must begin with an alphabetic character
([a-z][A-Z] ) followed by any number of alphanumeric characters
([a-z][A-Z][0-9] ) or an underscore (_).

8 Press Enter and enter the following text:

x == 1

This text is the actual condition. Eac h condition you enter must evaluate to
zero (false) or nonzero (true). You can u se optional brackets in the condition
(for example, [x == 1] ) as you would in Stateflow action language.

You can use data passed to the truth table function through its arguments
in truth table conditions. The prece ding condition tests whether the
argument x is equal to 1. You can also use data defined for parent objects
of the truth table, includ ing the Stateflow chart.

9 Repeat the preceding steps to enter the other two conditions.
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Entering Truth Table Decisions
Each decision column ( D1, D2, and so on) binds a group of condition outcomes
together with an AND relationship into a decision. The allowed values for the
condition outcomes in a decision are T (true), F (false), and - (true or false).
In “Entering Truth Table Conditions” on page 16-24 you entered conditions
for the truth table ttable . Continue by entering de cisions in the decision
columns with these steps:

1 Click anywhere in the Condition Table to make sure it is selected.

2 Click the Append Column toolbar button three times to add three
columns to the right end of the Condition Table.

3 Click the top cell in decision column D1.
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The cell is highlighted and a flashing text cursor appears in the cell.

4 Press the space bar until a value of T appears.

Pressing the space bar toggles through the possible values of F, -, and T.
You can also enter these characters dire ctly. All other entries are rejected.

5 Press the down arrow key to advance to the next cell down in the D1
column.

In the decision columns, you can use the arrow keys to advance to another
cell in any direction. You can also use Tab and Shift+Tab to advance left
or right in these cells.

6 Enter the remaining values for the decision columns, as shown here.

During e xecution of the truth table, decisions are tested in left to right order.
The order of testing for individual condi tion outcomes within a decision
is unde fined. Truth tables evaluate the conditions for each decision in
top-down order (first condition 1, then condition 2, and so on). Because this
implem entation is subject to change in the future, you must not depend on a
partic ular evaluation order.
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The Default Decision Column
The last decision column in ttable , D4, is the default decision for this truth
table. The default decision covers any r emaining decisions not tested for in
preceding decision columns to the lef t. You enter a default decision as the
last decision column on the right with an entry of - for all conditions in the
decision, where - represents any outcome for the condition.

In the preceding example, th e default decision column, D4, specifies these
decisions:

Condition
Decision
4

Decision
5

Decision
6

Decision
7

Decision
8

x == 1 F T F T T

y == 1 F F T T T

z == 1 F T T F T

Note The default decision column must be the last column on the right in
the Condition Table.

Entering Truth Table Actions
During execution of the truth table, dec isions are tested in left to right order.
When a decision is realized during execu tion of the truth table, the action in
the Action Table specified in the Actions row for that decision column is
executed and the truth table is exited.

In “Entering Truth Table Decisions” on page 16-26, you entered decisions in
the Truth Table Editor. The next step is to enter the actions you want to occur
for each decision in the Action Table. Later, you assign these actions to their
decisions in the Actions row of the Condition Table.

This section describes how to program truth table actions with these topics:

• “Setting Up the Action Table” on page 16-29 — Shows you how to set up the
Action table in truth table ttable .
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• “Programming Actions in Stateflow ® Classic Action Language” on page
16-30 — Provides sample code in State flow action language to program
actions in ttable . Choose this section if you selected Stateflow Classic as
the language for this truth table.

• “Programming Actions in Embedded MATLAB™ Action Language” on page
16-32 — Provides sample M-code to program actions in ttable . Choose
this section if you selected Embedded MATLAB as the language for this
truth table.

Setting Up the Action Table
1 Click anywhere in the Action Table to select it.

2 Click the Appe nd Row toolbar button three times to add three rows
to the bottom of the Action Table.

3 Click and drag the bottom border of the Truth Table Editor window down
to enlarge it and clearly show all rows of the Action Table, as shown.
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4 Program the actions using the language you selected for the truth table.

If you selected... Use this procedure...

Stateflow
Classic

“Programming Actions in Stateflow ® Classic Action
Language” on page 16-30

Embedded
MATLAB

“Programming Actions in Embedded MATLAB™
Action Language” on page 16-32

Programming Actions in Stateflow ® Classic Action Language
Follow this procedure to program your ac tions in Stateflow action language:

1 Click the top cell in the Description column of the Action Table.

The cell is highlighted and a flashing text cursor appears in the cell.
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2 Enter the following description:

set t to 1

Action descriptions are optional, but appear as comments in the generated
code for the truth table.

3 Press Tab to select the next cell on the right, in the Action column.

4 Enter the following text:

A1:

You begin an action with an optional label followed by a colon ( : ). Later, you
enter these labels in the Actions row of the Condition Table to specify an
action for each decision column. Like condition labels, action labels must
begin with an alphabetic character ( [a-z][A-Z] ) followed by any number
of alphanumeric characters ( [a-z][A-Z][0-9] ) or an underscore ( _).

5 Press Enter and enter the following text:

t=1;

You can use data passed to the truth table function through its arguments
and return value in truth table actions. The preceding action, t=1 , sets the
value of the return value t . You can also specify actions with data defined
for a parent object of the truth table, including the Stateflow chart. Truth
table actions can also broadcast or send events that are defined for the
truth table, or for a parent, such as the chart itself.

Note If you omit the semicolon at the end of an action, the result of the
action is echoed to the MATLAB ® Command Window when it is executed
during simulation. Use this echoing option as a debugging tool.

6 Enter the remaining actions in the Action Table, as shown here.
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Now you are ready to assign actions to decisions, as described in “Assigning
Truth Table Actions to Decisions” on page 16-36.

Programm ing Actions in Embedded MATLAB™ Action Language
If you selected Embedded MATLAB™ action language, you can write M-code
to program your actions. M-code allows you to add control flow logic and to
call MATLAB functions directly. In the following procedure, you will program
an action in the truth table ttable , using the following features of the
Embedded MATLAB syntax:

• Persistent variables

• if ... else ... end control flows

• for loop

• Ability to call the MATLAB function plot directly

Follow these steps:
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1 Click the top cell in the Description column of the Action Table.

The cell is highlighted and a flashing text cursor appears in the cell.

2 Enter this description:

Maintain a counter and a circular vector of length 6.
Every time this action is called,
output t takes the next value of the vector.

Action descriptions are optional, but appear as comments in the generated
code for the truth table.

3 Press Tab to select the next cell on the right, in the Action column.

4 Enter the following text:

A1:

You begin an action with an optional label followed by a colon ( : ). Later, you
enter these labels in the Actions row of the Condition Table to specify an
action for each decision column. Like condition labels, action labels must
begin with an alphabetic character ( [a-z][A-Z] ) followed by any number
of alphanumeric characters ( [a-z][A-Z][0-9] ) or an underscore ( _).

5 Press Enter and enter the following text:

persistent values counter;
cycle = 6;

if isempty(counter)
% Initialize counter to be zero
counter = 0;

else
% Otherwise, increment counter
counter = counter + 1;

end

if isempty(values)
% Values is a vector of 1 to cycle
values = zeros(1, cycle);
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for i = 1:cycle
values(i) = i;

end

% For debugging purposes, call the MATLAB
% function "plot" to show values
plot(values);

end

% Output t takes the next value in values vector
t = values( mod(counter, cycle) + 1);

You can use data passed to the truth table function through its arguments
and return value in truth table actions. The preceding action sets the return
value t equal to the next value of the vector values . You can also specify
actions with data defined for a parent object of the truth table, including
the Stateflow chart. Truth table actio ns can also broadcast or send events
that are defined for the truth table, or for a parent, such as the chart itself.

Note If you omit the semicolon at the end of an action, the result of the
action echoes to the MATLAB Command Window when it is executed
during simulation. Use this echoing option as a debugging tool.

6 Enter the remaining actions in the Action Table, as shown.
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Note that if you simulate this model, condition D1 will always be true,
causing action A1 to execute and display a plot of the content of the vector
values , as follows:
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Now you ar e ready to assign actions to decisions, as described in “Assigning
Truth Tab le Actions to Decisions” on page 16-36.

Assignin g Truth Table Actions to Decisions
You must a ssign at least one action from the Action Table to each decision in
the Condition Table. The truth table can use this association to determine
what act ion to execute when a decision tests as true.

In this s ection, you will learn how to link actions to decisions.

Rules for Assigning Actions to Decisions
You can be creative in assigning actions. Here is a list of rules for assigning
actions to decisions in a truth table.

• You specify actions for decisions by entering a row number or a label in the
Actions row cell of a decision column.
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If you use a label specifier, the label must be entered with the action in the
Action Table.

• You must specify at least one action for each decision.

Actions for decisions are not optional. Each decision must have at least one
action specifier that points to an action in the Action Table. If you want
to specify no action for a decision, specify a row that contains no action
statements.

• You can specify multiple actions for a decision with multiple specifiers
separated by a comma.

For example, for the decision column D1 you can specify A1, A2, A3 or 1, 2, 3
to execute the first three actions if decision D1 is true.

• You can mix row number and label action specifiers interchangeably in
any order.

The following example uses both row and label action specifiers.

• You can specify the same action for more than one decision, as shown.
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• Row number action specifiers in the Actions row of the Condition Table
automatically adjust to changes in the row order of the Actions Table.

In the following example, decisions D3 and D4 are assigned the actions in
rows 3 and 4 of the Action Table, respectively.
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Select row 4 in the Action Table and select the Move Row Up tool to
reverse rows 3 and 4, and notice the change in the action specifiers for
columns D3 and D4, as shown.
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How to Assign Actions to Decisions
This section describes how to assign acti ons to decisions in the example truth
table ttable . In this example, the Actions row cell for each decision column
contains a label specified for each action in the Action Table. Decision D1
is assigned the action t=1 , decision D2 is assigned the action t=2 , and so
on. Follow these steps:

1 Click the bottom cell in decision column D1, the first cell of the Actions
row of the Condition Table.

2 Enter the action specifier A1 for decision column D1, that links the action
labeled A1 in the Action Table to decision D1.

3 Enter the action specifiers for the remaining decision columns as shown
in the following:
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Now you are ready to perform the final step in programming a truth table,
“Adding Initial and Final Actions” on page 16-41.

Adding Initial and Final Actions
In addition to the actions for decisions, you can add initial and final actions to
the truth table function. Ini tial actions specify an action that executes before
any decisions are tested. Final actions specify an action that executes as the
last action before the truth table is exited. To specify initial and final actions
for a truth table, use the action labels INIT and FINAL in the Action Table.

Use this procedure to add initial and f inal actions to display diagnostic
messages in the MATLAB Command Window before and after the execution
of the truth table ttable :

1 In the Truth Table Edito r for the truth table ttable , right-click row 1 of
the Action Table.

A pop-up menu appears.
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2 From the pop-up menu, select Insert Row.

A blank row is inserted at the beginning of the Action Table.

3 Click the Append Row tool .

A blank row is appended to the bottom of the Action Table.

4 Click and drag th e bottom border of the Truth Table Editor to expose all six
rows of the Action Table, as shown.

5 Add the initial action in row 1 as follows:
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Truth Table
Type

Description Action

Stateflow Classic Initial
action:Display
message

INIT:ml.disp('truth table
ttable entered');

Embedded
MATLAB

Initial
action:Display
message

INIT:disp('truth table
ttable entered');

6 Add the final action in row 6 as follows:

Truth Table
Type

Description Action

Stateflow Classic Final
action:Display
message

FINAL:ml.disp('truth table
ttable exited');

Embedded
MATLAB

Final
action:Display
message

FINAL:disp('truth table
ttable exited');

Even though the initial and final action s for the preceding truth table example
are shown in the first and last rows of the Action Table, you can enter these
actions in any row. You can also explicitly assign the initial and final actions
to decisions by using the action specifier INIT or FINAL in the Actions row of
the Condition Table.

16-43



16 Truth Table Functions

Debugging a Truth Table

In this section...

“Checking Truth Tables for Errors” on page 16-44

“Debugging a Truth Table During Simulation” on page 16-45

Checking Truth Tables for Errors
Once you completely specify your truth tables, you must begin the process of
debugging them. The first step is to run diagnostics to check truth tables for
syntax errors including overspecificati on and underspecification, as described
in “Correcting Overspecified and Under specified Truth Tables” on page 16-54.

To check for syntax errors, follow these steps:

1 Double-click the truth table to open its editor.

2 In the Truth T able Editor toolbar, click the Run Diagnostics button .

If there are no errors or warnings, the Builder window appears and reports
a message of success. If errors are found, the Builder window lists them.
For example, if you change the action for decision column D4 to an action
that does not exist, the Builder window appears.
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Each detected error appears with a re d button, and each warning appears
with a gray button. The first error me ssage appears highlighted in the top
pane, and the diagnostic message appears in the bottom pane.

Truth table diagnostics run automatically when you start simulation of the
model with a new or modified truth table. If no errors are found, the Builder
window does not appear and simulation commences immediately.

Debugging a Truth Table During Simulation
There are several ways to debug truth tables during simulation:
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Method Use With How To Do It

Use Stateflow ®

debugging tools to step
through each condition
and action, and monitor
data values during
simulation.

Stateflow Classic truth
table and Embedded
MATLAB™ truth table

See “Using Stateflow ®

Debugging Tools” on
page 16-46.

Use Embedded
MATLAB debugging
tools to step through
Embedded MATLAB
code generated by the
truth table.

Embedded MATLAB
truth table only

See “Using Embedded
MATLAB™ Debugging
Tools” on page 16-53.

Using Stateflow ® Debugging Tools
When you use Stateflow debugging tools to debug truth tables, you must
perform these tasks:

1 Specify a breakpoint for t he call to the truth table.

2 Step through the conditions and actions.

Specifying a Breakpoint for the Call to a Truth Table. Before you
debug the truth table during simulation, you must set a breakpoint for the
truth table in its properties dialog. This breakpoint pauses execution during
simulation so that you can debug each execution step of a truth table using
the Stateflow Debugger.

Follow these steps:

1 In the Stateflow Editor, rig ht-click the truth table.

2 In the resulting pop-up shortcut menu, select Properties.

The Truth Table properties dialog appears.
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3 For Breakpoints, select Function Call.

This option sets a breakpoint to occu r when this truth table function is
called in the Stateflow chart during simulation.

4 Select OK to save settings and close the Truth Table properties dialog.

Stepping Through Conditions and Actions of a Truth Table. After
setting a breakpoint for the truth tabl e function call, you can step through
the conditions and actions by following these steps:

1 Select the Debug button in the Stateflow Editor toolbar to start the
Stateflow Debugging window as shown.
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2 From the Stateflow Debugg ing window, select the Start button to begin
simulation of your model.

When you simulate your model, t he Stateflow Debugger checks
automatically for syntactical errors if the truth tables have changed since
the last simulation. If you receive e rrors or warnings, make corrections
before you try to simulate again.

If there are no syntactical errors in the tru th table, a simulation application
builds a nd the simulation of your model begins.

3 Wait until the breakpoint for the call to the truth table is reached.

When this breakpoint is enco untered, the truth table ttable appears and
the Start button in the Stateflow Debugger changes to the Continue
button.

4 In the St ateflow Debugging window, click the Step button three times to
advance simulation through the call to the truth table.

The INIT action of the truth table is highlighted prior to its execution.
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5 Click Step to execute the INIT action and advance truth table execution to
the first condition, as shown.

6 Click Step to evaluate the first condition a nd advance truth table execution
to the second condition.
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7 Click Step to evaluate the second condition and advance truth table
execution to the third condition.

8 Click Step to evaluate the third condition and advance truth table
execution to the first decision.
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9 Click Step twice.

Because the first decision is true, tr uth table execution advances to its
action, which is labeled A1.

10 Click Step three times to execute action A1 and advance to the FINAL action.

11 In the Stateflow Debugging window, from the Browse Data pull-down,
select All Data (Current Chart).
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A continuously updated display appea rs in the bottom pane of the Stateflow
Debugging window, as shown.

You can use this display to monitor S tateflow data during simulation.

12 In the Stateflow Debugging window, click Step.

This step executes the final action and exits the truth table. The Display
block in t he Simulink ® window should now display the number 1, as shown.
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13 Change the values of the Constant blocks and continue stepping through
the simulation.

For example, you might want to set the Constant1 block to 1 (sets b to 1)
and the other Constant blocks to 0 (sets a and c to 0). Or you might want to
set all the Constant blocks to 0. To enter a new value for a Constant block,
double-click it. In the resulting Block Parameters dialog, enter the new
value in the Constant value field.

Using Embedded MATLAB™ Debugging Tools
Embedded MATLAB truth tables generate content as Embedded MATLAB
code, a format that offers advantages fo r debugging. You can set breakpoints
on any line of generated code (whereas you cannot set breakpoints directly on
a truth table). You can debug code ge nerated by Embedded MATLAB truth
tables the same way you debug an Embedded MATLAB function, as described
in “Debugging an Embedded MATLAB Function Block”.

For more information about how to generate content for truth tables, see
“How Stateflow ® Software Implements Truth Tables” on page 16-62.
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Correcting Overspecified and Underspecified Truth Tables

In this section...

“Defining an Overspecified Truth Table” on page 16-54

“Defining an Underspecified Truth Table” on page 16-55

Defining an Overspecified Truth Table
An overspecified truth table contain s at least one decision that will never
be executed because it is already specified in a previous decision in the
Condition Table. This example shows the Condition Table of an
overspecified truth table.

The decision in column D3 (-TT) specifies the decisions FTT and TTT. These
decisions have already been specified by decisions D1 (FTT) and D2 (TTT and
TFT). Th erefore, column D3 is an overspecification.

This exa mple shows the Condition Table of a truth table that appears to
be overspecified, but is not.
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In this case, the decision D4 specifies two decisions (TTT and FTT). FTT
is specified by decision D1, but TTT is not specified in a previous decision
column. Therefore, this Condition Table is not overspecified.

Defining an Underspecified Truth Table
An underspecified truth table lacks one or more possible decisions that might
require an action to avoid undefined behavior. This example shows the
Condition Table of an underspecified truth table:

Complete coverage of the conditions i n the preceding truth table requires a
Condition Table with every possible decision, like this example.
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A possible workaround is to specify an a ction for all other possible decisions
through a default decision, as in this example.

The last decision column is the default decision for the truth table. The
default decision covers any remaining decisions not tested for in the preceding
decision columns. See “The Default Decision Column” on page 16-28 for an
example and more complete description of the default decision column for
a Condition Table.
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Model Coverage for Truth Tables

Stateflow ® software reports model coverages for the decisions made by the
objects in a Stateflow cha rt during model simulat ion. The model coverage
report includes coverage for the deci sions made by truth table functions, as
follows:

Type of Truth
Table

Type of Coverage

Stateflow Classic Coverage report s generated for conditions only.

Embedded
MATLAB™

Coverage reports generated for conditions and actions
because you can use the Embedded MATLAB action
language to specify decision points in actions using
control flow constructs, such as loops and switch
statements.

This section examines model coverage for an example Stateflow Classic truth
table, check_temp , which is tested during simula tion in this Stateflow chart.
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The contents of the check_temp truth table are shown here.
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You generate model coverage reports for a mod el during simulation. You first
specify t he creation of the reports in the Simulink ® model window and then
simulate the model. When simulation ends, a model coverage report appears
in a brows er window. See “Making Model Cove rage Reports” on page 19-53 for
informa tion on how to set up a model coverage report.

Note The Model Coverage tool requires a Simulink ® Verification and
Validat ion™ software license.

The foll owing is the part of a model cove rage report that reports on the
check_t emp truth table.
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Coverage for the truth table function in the Coverage (this object) column
shows no valid coverage values. The re ason for this is that the container
object for the truth table function, the chart, makes no decision on whether to
execute the check_temp truth table or not.

Stateflow software implements a Stateflow Classic truth table by generating a
graphical function for it. The decision logic of the truth table is implemented
internally in the transitions of the gra phical function generated for the truth
table. See “How Stateflow ® Software Implements Truth Tables” on page 16-62
for a description of the generated graphical function for a truth table.

The transitions of the generated graphi cal function for a truth table contain
the decisions and conditions of the truth table. Coverage for the descendants
in the Coverage (inc. descendants) column includes coverage for these
conditions and decisions, which are tested when the truth table function is
called.

In the case of the check_temp truth table, the only de cision covered in the
model coverage report is the D1 decision. There is no model coverage for the
default decision, D2.
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Note All logic that leads to taking a default decision is based on a false
outcome for all preceding decisions. This means that no logic is required for
the default decision, which receives no model coverage.

Coverages for the D1 decision and its individual conditions in the check_temp
truth table function are as follows:

• Decision coverage for the D1 decision is 100% because this decision was
tested both true and false during simulation.

• Condition coverage for the three conditions of the D1 decision indicate that
5 of 6 possible T/F values were tested.

Because each condition can have an outcome value of T or F, three
conditions can have 6 possible values. During simulation, only 5 of 6 were
tested. The D1 decision coverage column shows that the last condition
received partial condition coverage by not evaluating to false (F) during
simulation. The missing occurrence of the false (F) condition outcome is
indicated by the appearance of a red F character.

• MCDC coverage looks for decision reversals that occur because one
condition outcome changes from T to F or from F to T. The D1 decision
reverses when any of the conditions changes from T to F. This means that
the outcomes FTT, TFT, and TTF reverse this decision by a change in the
value of one condition.

The top two conditions for the D1 decision tested both true ( T) and false (F)
with a resulting reversal in the decision from true ( T) to false (F). However,
the bottom condition tested only a true ( T) outcome but no false ( F) outcome
(appearance of red F character). Therefore, two of a possible three reversals
were observed and coverage is 2/3 = 67%.

• The (ok) next to the ONaction label indicates that its decision realized both
true ( T) and false (F) during simulation. Because the default decision is
based on no logic of its own, it does not receive the (ok) mark.
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How Stateflow ® Software Implements Truth Tables

In this section...

“Types of Generated Content” on page 16-62

“Viewing Generated Content” on page 16-62

“How Stateflow ® Software Generates Graphical Functions for Truth Tables”
on page 16-63

“How Stateflow ® Software Generates Embed ded MATLAB™ Code for Truth
Tables” on page 16-66

Types of Generated Content
Stateflow ® software realizes the logical behavior specified in a truth table by
generating content as follows:

Type of Truth Table Generated Content

Stateflow Classic Graphical function

Embedded MATLAB™ Embedded MATLAB code

Viewing Generated Content
You generate content for a truth table when you simulate your model. Content
regenerates whenever a truth table changes. To view the generated content
of a truth table, follow these steps:

1 Simulate the model that contains the truth table.

2 Double-click the truth table to open its editor.

3 Select the View Generated Content button.

Stateflow Classic truth tables disp lay generated content as described
in “How Stateflow ® Software Generates Graphical Functions for Truth
Tables” on page 16-63.
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How Stateflow ® Software Generates Graphical
Functions for Truth Tables
This section describes how Stateflow software translates the logic of a
Stateflow Classic truth table into a graphical function.

In this example, a Stateflow Classic truth table has three conditions, four
decisions and actions, and initial and final actions.
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Stateflow software generates a graph ical function for the preceding truth
table. The top half of the flow graph is as follows, where the numbered steps
show the order of execution.

The top half of the flow graph does the following:

• Performs initial actions

• Evaluates the conditions and stores the results in temporary data variables

The temporary data for storing condit ions is based on the labels that you
enter for the conditions. If you do not specify the labels, temporary data
variables appear.

The bottom half of the flow graph is as follows, where the numbered steps
show the order of execution for each condition and action.
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In the bottom half of the flow graph, th e stored values for the conditions are
used to make decisions on which action to perform. Each decision appears as
a fork from a connective junction with one of two possible paths:

• A transition segment with a decision followed by a segment with the
consequent action

The action is specified as a con dition action that leads to the FINAL action
and termination of the flow graph
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• A transition segment that flows to the next fork for an evaluation of the
next decision

This transition segment has no condition or action.

This implementation continues from the first decision through the remaining
decisions in left to right column order. When a specified decision is matched,
the action specified for that decision i s executed as a condition action of its
transition segment. Once the action i s performed, the flow graph performs
the final action for the truth table and terminates. Therefore, only one action
results from a call to a truth table gra phical function. This behavior also
implies that no data dependencies are po ssible between different decisions.

How Stateflow ® Software Generates Embedded
MATLAB™ Code for Truth Tables
Stateflow software generates the content of Embedded MATLAB truth tables
as Embedded MATLAB code that represents each action as a nested function
inside the main tru th table function.

Nested functions offer several a dvantages over subfunctions:

• Nested functions are independent of e ach other. Therefore, variables are
local to each function and not su bject to naming conflicts.

• Nested functions can access all data from the main truth table function.

The generated content appears in a n Embedded MATLAB Editor, which
provides tools for simulation and deb ugging, as described in “Debugging an
Embedded MATLAB Function Block”.

Here is the generated content for the Embedded MATLAB truth table
described in “Programming Act ions in Embedded MATLAB™ Action
Language” on page 16-32:

• Main truth table function
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• Action A1
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• Action s A2, A3, and A4
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Truth Table Editor Operations

In this section...

“Truth Table Editor Reference” on page 16-70

“Searching and Replacing Text in Truth Tables” on page 16-73

“Using Row and Column Tooltip Identifiers” on page 16-75

Truth Table Editor Reference
This section describes the operatio ns you can perform in the Truth Table
Editor.

Adding or Modifying Stateflow ® Data

Edit Data/Ports lets you add or modify Stateflow ® data with
the Model Expl orer.

Appending Row s and Columns

Append Column adds a column on the right end of the selected
table.

Append Row adds a row to the bottom of the selected table.

Compacting the Table

Compact Table removes the empty rows and columns of the
selected table.

Deleting Text , Rows, and Columns
To delete the contents of a cell:

1 Right-click the cell.
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2 From the resulting pop-up menu, select Delete Cell.

To delete an entire row or column:

1 Right-click the row or column header.

2 From the resulting pop-up menu, select Delete Row or Delete Column.

You can also click the row or column header to select the entire row or
column and press the Delete key.

Diagnosing the Truth Table

Run Diagnostics checks the truth table for syntax errors. See
“Debugging a Truth Table” on page 16-44.

Viewing Generated Content

View Generated Content displays the code generated
for the truth table. Stateflow C lassic truth tables generate
graphical functions; Embedded MATLAB™ truth tables generate
Embedded MATLAB code. See “How Stateflow ® Software
Implements Truth Tables” on page 16-62.

Editing Tables
Both the default Condition Table and the default Action Table have one
empty row. Click a cell to edit its text contents. Use Tab and Shift+Tab to
move horizontally between cells. To add rows and columns to either table, see
“Appending Rows and Columns ” on page 16-70.

You set the Truth Table Editor to display only one of the two tables by
double-clicking the header of the table to display. To revert to the display of
both tables, double-click the header of the displayed table.

Cells for the numbered rows in decision columns like D1 can take values of T,
F, or - . Once you select one of these cells, you can use the spacebar to step
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through the T, F, and - values. In these cells you can use the left, right, up,
and down arrow keys to advance to another cell in any direction.

Inserting Rows and Columns
To insert a blank row above an existing table row:

1 Right-click any cell in the row (including the row header).

2 From the resulting pop-up menu, select Insert Row.

To insert a blank decision column to the left of an existing decision column:

1 Right-click any cell in the existing decision column (including the column
header).

2 From the resulting pop-up menu, select Insert Column.

Moving Rows and Columns
To move a condition or action row up or down:

1 Click the row header to select the row.

2 Drag the row to a new position.

The Truth Table Editor renumbers the rows automatically.

To move a decision column up or down:

1 Click the column header to select the column.

2 Drag the column to a new position.

The Truth Table Editor renumbers th e decision columns automatically.

Printing Tables

Print makes a printed copy or an online viewable copy (HTML
file) of the truth table.
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Selecting and Deselecting Table Elements

• To select a cell for editing, click the cell.

• To select text in a cell, click and drag your pointer over the text.

• To select a row, click the header for the row.

• To select a decision column in the Condition Table, click the column
header (D1, D2, and so on).

• To deselect a selected cell, row, or column, press Esc, or click another table,
cell, row, or column.

Undoing and Redoing Edit Operations

Select the Undo tool or press Ctrl+Z (Command+Z) to reverse
the effects of the preceding operation.

Select the Redo tool or press Ctrl+Y (Command+Y) to reverse
the effects of the most recently undone edit operation.

Viewing the Stateflow ® Chart for the Truth Table

Go to Stateflow Editor displays the current truth table function
in its native Stateflow chart.

Searching and Replacing Text in Truth Tables
You can use the Search & Replace tool to search for text in the Description,
Condition, and Action columns of a truth table and replace it with a
substitute string.

A Simple Example
Suppose you want to search a model for the string x is equal to and replace
it with the string x equals . Follow these steps:

1 In the Stateflow Editor, select Search & Replace from the Tools menu.
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2 In the Search & Replace dialog box, enter the text x is equal to in the
Search field, and the text x equals in the Replace field.

3 Select the Search button.

You see something like this in the Search & Replace window.

In the Viewer pane of the Search & Rep lace window, the first occurrence of
the string x is equal to is highlighted normally and the other matches
are highlighted lightly.

4 Select Replace to replace the first match with x equals .

5 Select Replace All to replace all matches in the model (not just in the
truth table) with x equals .
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Note For more information, s ee “Using the Stateflow ® Search & Replace
Tool” on page 20-13.

Using Row and Column Tooltip Identifiers
Row and column header tooltips appear to aid truth table navigation when
you scroll to other columns or rows while editing a large truth table. When
you place your pointer over row or column headers, these tooltips appear:

Table Row or Column Tooltip

Condition Condition row Condition entered for this
row

Condition Decision column ( D1,
D2,...)

Row or label entered
for this decision in the
Actions row

Condition Actions row Actions: specify a row
from the Action Table

Action Any row Description entered for
this action

16-75



16 Truth Table Functions

16-76



17

Using Embedded
MATLAB™ Functions

Introduction to Embedded
MATLAB™ Functions (p. 17-2)

Example of using Embedded
MATLAB™ functions in Stateflow ®

charts

Building a Simulink ® Model with
an Embedded MATLAB™ Function
(p. 17-5)

Procedure for building a Simulink ®

model with a Stateflow chart
that calls an Embedded MATLAB
function

Programming an Embedded
MATLAB™ Function (p. 17-11)

Procedure for programming an
example Embedded MATLAB
function that gives you an overview
of program syntax, local data, and
callable functions

Debugging an Embedded
MATLAB™ Function (p. 17-15)

Procedure for debugging an example
Embedded MATLAB function with
its own debugging tools

Model Coverage for an Embedded
MATLAB™ Function (p. 17-22)

Interpretation of the results of a
coverage report that you generate
for an example model

Working with Structures and Bus
Signals in Embedded MATLAB™
Functions (p. 17-37)

Explains how to define structures
and interface with bus signals in
Embedded MATLAB functions in
Stateflow charts



17 Using Embedded MATLAB™ Functions

Introduction to Embedded MATLAB™ Functions

You can use Embedded MATLAB™ functions to add MATLAB ® functions to
a Stateflow ® chart. This capability is useful for coding algorithms that are
better expressed in the textual MATLA B language than in the graphical
Stateflow action language. Embedded MATLAB functions work with a subset
of the MATLAB language called the Embedded MATLAB subset, which
provides optimizations for generating efficient, producti on-quality C code
for embedded applications. For more i nformation, see “Working with the
Embedded MATLAB Subset”.

Here is an example of a Simulink ® model with a Stateflow chart that contains
an Embedded MATLAB function:
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You will build this model in “Building a Simulink ® Model with an Embedded
MATLAB™ Function” on page 17-5.

Note in this example that the Embedded MATLAB function can call any of
these types of functions:

• Subfunctions

Subfunctions are defined in the body of the Embedded MATLAB function.
In the preceding example, avg is a subfunction. See “Calling Subfunctions”
in the Embedded MATLAB User’s Guide.

• Embedded MATLAB run-time library functions
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Embedded MATLAB run-time library functions are a subset of the
functions that you can call in the MATLAB workspace. They generate
C code for building targets that conform to the memory and data type
requirements of embedded environments. In the preceding example,
length , sqrt , and sum are examples of Embedded MATLAB run-time
library functions. See “Calling Embedded MATLAB Library Functions” in
the Embedded MATLAB User’s Guide.

• Stateflow functions

Graphical, truth table, and other Embedded MATLAB functions can be
called from an Embedded MATLAB function in a Stateflow chart.

• Some MATLAB functions

Functions that cannot be resolved as subfunctions, Embedded MATLAB
run-time library functions, or Stateflow functions are resolved in the
MATLAB workspace. These functions d o not generate code; they execute
only in the MATLAB workspace during simulation of the model. See
“Calling MATLAB Functions” in the Embedded MATLAB User’s Guide.

• Fixed-Point Toolbox™ run-time library functions

For more information on fixed-point support in Embedded MATLAB
functions, refer to “Working with the Fixed-Point Embedded MATLAB
Subset” in the Fixed-Point Toolbox User’s Guide.
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Building a Simulink ® Model with an Embedded MATLAB™
Function

This section exp lains how to create a Simulink ® model with a Stateflow ® block
that calls two E mbedded MATLAB™ functions, meanstats and stdevstats .
meanstats calculates a mean and stdevstats calculates a standard deviation
for the values i n vals and outputs them to the Stateflow data mean and
stdev , respectively.

Follow these s teps:

1 Create a new Si mulink model with the following blocks:

2 Save the model as call_stats_function_stateflow .

3 In the Simulink model, double-clic k the Stateflow block to open the
Stateflow Editor.

4 In the S tateflow Editor, drag two Embe dded MATLAB functions into the
empty Stateflow chart using this i con from the tool palette:
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A text field with a flashing cursor appears in the middle of each Embedded
MATLAB function.

5 Label each function as shown:

You must label an Embedded MATLAB f unction with its signature. Use
the following syntax:

[ return_val1, return_val2,...] = function_name ( arg1, arg2,...)

You can specify multiple return values and multiple input arguments, as
shown in the syntax. Each return value and input argument can be a
scalar, vector, or matrix of values.

Note For Embedded MATLAB functions with only one return value, you
can omit the brackets in the signature label.
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6 In the Stateflow chart, draw a default tr ansition into a terminating junction
with this condition action:

{mean = meanstats(invals);
stdev = stdevstats(invals);}

The Stateflow chart shoul d look like this figure.

7 In the Sta teflow chart, double-click the function meanstats to edit its
function body in the Embedded MATLAB Editor.

8 In the Embedded MATLAB Editor, select Tools > Model Explorer.

The Model Explorer appears.
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The function meanstats is highlighted in the Model Hierarchy pane. The
Contents pane displays the input argument vals and output argument
meanout . Both are scalars of type double by default.

9 Double-click the vals row under the Size column to set the size of vals to 4.

10 Back in the Stateflow chart, double-click the function stdevstats and
repeat ste ps 8 and 9.

11 Back in the Model Hierarchy pane of the Model Explorer, select Chart
and add the following data:

Name Scope Size

invals Input 4

mean Output Scalar (no change)

stdev Output Scalar (no change)

You should now see the following data in the Model Explorer.
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After you add the data invals , mean, and stdev to the Stateflow chart, the
corresponding input and output port s appear on the Stateflow block in
the Simulink model.

12 Connect the Constant block and the Display block to the ports of the
Stateflow block and save the model.
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The section “Debugging an Embedded MATLAB™ Function” on page 17-15
shows you how to program the functions meanstats and stdevstats .
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Programming an Embedded MATLAB™ Function

To program the functions meanstats and stdevstats that you created in
“Building a Simulink ® Model with an Embedded MATLAB™ Function” on
page 17-5, follow these steps:

1 Open the Stateflow ® chart in the model call_stats_function_stateflow .

2 In the Stateflow chart, open the Embedded MATLAB™ function meanstats .

The Embedded MA TLAB Editor appears with the function header as
shown.

This function header is taken from the label that you added to the function
in the Stateflow chart. You can edit it directly in the Embedded MATLAB
Editor, and your changes will be refle cted in the Stateflow Editor when you
close the window or click the Update Diagram icon in the toolbar:

3 After the fu nction header, enter a line space and this comment:

% Calculates a statistical mean for vals

4 Now enter th is statement:

eml.extrinsic('plot');

The functio n plot is a MATLAB ® function that is not supported by the
Embedded MA TLAB subset. To call unsupported MATLAB functions, you
must first declare them to be extrinsic, as described in “Calling MATLAB
Functions ” in the Embedded MATLAB User’s Guide.

5 Add the line:

len = length(vals);
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The function length is an example of a built-in MATLAB function that is
supported by the Embedded MATLAB subset. You can call this function
directly to return the vector length of its argument vals . When you build a
simulation target, the function length is implemented with generated C
code. MATLAB functions supported by the Embedded MATLAB subset
appear in “Embedded MATLAB Function Library Reference” in the
Embedded MATLAB User’s Guide.

The variable len is an example of implicitly declared local data. It has
the same size and type as the value assigned to it — the value returned
by the function length , a scalar double . You can change the size and type
of len as described in “Creating Local Variables By Assignment” in the
Embedded MATLAB User’s Guide.

The Embedded MATLAB function treat s implicitly declared local data as
temporary data. It comes into exist ence only when the function is called
and disappears when the function exits. You can declare local data for an
Embedded MATLAB function to be persistent by using the persistent
construct (see “Declaring Persisten t Variables” in the Embedded MATLAB
User’s Guide).

6 Enter this line to calculate the value of meanout :

meanout = avg(vals,len);

The function meanstats stores the mean of vals in the Stateflow data
meanout . Since these data are defined for the parent Stateflow chart, you
can use them directly in the Embedded MATLAB function.

Two-dimensional arrays with a single row or column of elements are
treated as vectors or matrices in Embedded MATLAB functions. For
example, in meanstats , the argument vals is a four element vector. You
can access the fourth element of this vector with the matrix notation
vals(4,1) or the vector notation vals(4) .

The Embedded MATLAB function uses the functions avg and sum to
compute the value of mean. sum is an Embedded MATLAB run-time library
function. avg is a subfunction that you define later. When resolving
function names, Embedded MATLAB functions look for subfunctions first,
followed by Embedded MATLAB run-time library functions.
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Note If you call a function that the E mbedded MATLAB function cannot
resolve as a subfunction or Embedde d MATLAB runtime library function,
you must declare the function to be extrinsic so it can be resolved as a
MATLAB function, as described in “Calling MATLAB Functions” in the
Embedded MATLAB User’s Guide.

7 Enter this line to plot the input values in vals against their vector index.

plot (vals,'-+');

Recall that you declared plot to be an extrinsic function because it is
not supported in the Embedded MATLAB runtime library. When the
Embedded MATLAB function encounters an extrinsic function, it sends the
call to the MATLAB workspace for execution during simulation.

8 Now, define the subfunction avg , as follows:

function mean = avg(array,size)
mean = sum(array)/size;

The header for avg defines two arguments, array and size , and a single
return value, mean. The subfunction avg calculates the average of the
elements in array by dividing their sum by the value of argument size .

For more information on creating subfunctions, see “Subfunctions” in
MATLAB software documentation.

The complete code for the Embedded MATLAB function meanstats looks
like this:

function meanout = meanstats(vals)

% Calculates a statistical mean for vals

eml.extrinsic('plot');
len = length(vals);
meanout = avg(vals,len);

plot(vals,'-+');
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function mean = avg(array,size)
mean = sum(array)/size;

9 Save the model (call_stats_function_stateflow ).

10 Back in the Stateflow chart, open the second Embedded MATLAB function
stdevstats and add code to compute the standard deviation of the values
in vals . The complete code should look like this:

function stdevout = stdevstats(vals)

%Calculate the standard deviation for vals

len = length(vals);
stdevout = sqrt(sum(((vals-avg(vals,len)).^2))/len);

function mean = avg(array,size)
mean = sum(array)/size;
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Debugging an Embedded MATLAB™ Function

In this section...

“Checking Embedded MATLAB™ Functions for Syntax Errors” on page
17-15

“Run-Time Debugging for Embedded MATLAB™ Functions” on page 17-17

“Checking for Data Range Violations” on page 17-20

Checking Embedded MATLAB™ Functions for Syntax
Errors
Before you can build a simulation application for a model, you must fix syntax
errors. Follow these steps to check the Embedded MATLAB™ function
meanstats for syntax violations:

1 Open the the Embedded MATLAB function meanstats inside the Stateflow ®

chart in the call_stats_function_stateflow model that you updated in
“Programming an Embedded MATLAB™ Function” on page 17-11.

The Embedded MATLAB Editor uses the MATLAB ® M-Lint Code Analyzer
to automatically check your function code for errors and recommend
corrections (see “Using M-Lint with Embedded MATLAB Code” in the
Embedded MATLAB User’s Guide).

2 In the Embed ded MATLAB Editor, select the Build tool to build a
simulatio n application for the example Simulink ® model.

If there are no errors or warnings, the Builder window appears and reports
success. Otherwise, it lists errors. For example, if you change the name
of subfunction avg to a nonexistent subfunction aug in meanstats , the
Builder reports these errors:
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Each error message appears with a re d button. The selected error message
displays diagnostic information in the bottom pane.

3 Click the link in the diagnostic message to display the offending line of
code, as shown.
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Run-Time Debugging for Embedded MATLAB™
Functions
You use simulation to test your Embedded MATLAB functions for run-time
errors that are not detectable by the S tateflow Debugger . When you simulate
your model, your Embedded MATLAB functions undergo diagnostic tests for
missing or undefined information and po ssible logical conflicts as described
in “Checking Embedded MATLAB™ Functions for Syntax Errors” on page
17-15. If no errors are found, the simulation of your model begins.

Follow these steps to simulate and debug the meanstats Embedded MATLAB
function during run-time conditions:

1 In the Embedded MATLAB Editor, click the dash (-) character in the left
margin of line 6.

A small red ball appears next to line 6, indicating that you set a breakpoint.

2 Click the Start Simulation icon to begin simulating the model.

If you get any errors or warnings, make corrections before you try to
simulate again. Otherwise, simula tion pauses when execution reaches
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the breakpoint you set. This pause is indicated by a small green arrow in
the left margin as shown.

3 Click the Step icon to advance execution one line to line 7.

Notice that line 7 calls the subfunction avg . If you click Step here,
execution advances to line 9, past the execution of the subfunction avg .
In order to track execution of the lines in the subfunction avg , you must
click the Step In icon.

4 Click the Step In icon to advance execution to the first line of the
called subfunction avg .

Once you are in the subfunction, you can advance through the subfunction
one lin e at a time with the Step tool. If the subfunction calls another
subfunction, use the Step In tool to step into it. If you want to continue
throu gh the remaining lines of the subfunction and go back to the line after

the subfunction call, click the Step Out icon .

5 Click the Step icon to execute the only line in the subfunction avg .
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When the subfunction avg finishes its execution, you see a green arrow
pointing down under its last line.

6 Click the Step icon to return to the function meanstats .

Execution advances to the line after to the call to the subfunction avg ,
line 9.

7 To display the value of the variable len , place your pointer over the text
len in line 6 for at least a second.

The value of len appears adjacent to your pointer.

You can display the value for any data in the Embedded MATLAB block
function in this way, no matter where it appears in the function. For
example, you can display the values for the vector vals by placing your
pointer over it as an argument to the function length in line 6, or as an
argument in the function header.

You can also report the values for Embedded MATLAB function data in
the MATLAB Command Window during simulation. When you reach
a breakpoint, the debug>> command prompt appears in the MATLAB
Command Window (you might have to press Enter to see it). At this
prompt, you can inspect data defined for the Embedded MATLAB function
by entering the name of the data, as shown in this example:

debug>> len
len =

4
debug>>

As another debugging alternative, yo u can display the execution result
of an Embedded MATLAB function li ne by omitting the terminating
semicolon. If you do, execution res ults for the line are echoed to the
MATLAB Command Window during simulation.

8 Click the Continue icon to leave the function until it is called again
and the bre akpoint on line 6 is reached.
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At any point in a function, you can advance through the execution of the
remaining lines of the function with the Continue tool. If you are at the end
of the function, clicking the Step icon accomplishes the same thing.

9 Click the breakpoint at line 6 to remove it and click the green arrow to
complete the simulation.

In the Simulink window, the computed values of mean and stdev now
appear in the Display blocks.

Checking for Data Range Violations
During debugging, Embedded MATLAB fun ctions automatica lly check input
and output data for data range violations.

Specifying a Range
To specify a range for input and ou tput data, follow these steps:

1 In the Model Explorer, select the Embedded MATLAB function input or
output of interest.
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The Data properties dialog box opens in the Dialog pane of the Model
Explorer.

2 In the Data properties dialog box, select the Value Attributes tab and
enter a limit range, as described in “Limit range properties” on page 7-22.

Controlling Data Range Checking
To control data range checking, follow these steps:

1 Open the Stateflow Debugger, as described in “Opening the Stateflow ®

Debugger” on page 19-3.

2 In the Error checking options pane, perform one of these actions:

To: Do This:

Enable data range checking Check Data Range.

Disable data range checking Uncheck Data Range.
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Model Coverage for an Embedded MATLAB™ Function

In this section...

“About Model Coverage” on page 17-22

“Types of Model Coverage in Embedded MATLAB™ Functions” on page
17-23

“Creating a Model with Embedded M ATLAB™ Function Decisions” on
page 17-23

“Understanding Embedded MATLAB™ Function Model Coverage” on page
17-28

About Model Coverage
The Model Coverage tool reports model coverages for the decisions and
conditions of Embedded MATLAB™ functions. For example, the Embedded
MATLAB function if statement

if (x > 0 || y > 0)
reset = 1;

contains a decision with two conditions ( x > 0 and y > 0 ). You use the
Model Coverage tool for Embedded MATLAB functions to make sure that
all decisions and conditions are taken during simulation of the model.

For a description of model coverage for other Stateflow ® objects, see
“Understanding Model Coverage for Stateflow ® Charts” on page 19-52.

Note The Model Coverage tool requires a Simulink ® Verification and
Validation™ software license.
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Types of Model Coverage in Embedded MATLAB™
Functions
During simulation, these Embedded MA TLAB function statements are tested
for Decision Coverage:

• function header — Decision coverage is 100% if the function or subfunction
is executed.

• if — Decision coverage is 100% if the if expression evaluates to true at
least once and false at least once.

• switch — Decision coverage is 100% if every switch case is taken,
including the fall-through case.

• for — Decision coverage is 100% if the eq uivalent loop condition evaluates
to true at least once, and false at least once.

• while — Decision coverage is 100% if the equivalent loop condition
evaluates to true at least once, and false at least once.

During simulation, these logical condi tions are tested for C ondition Coverage
and MCDC in the Embedded MATLAB function:

• if statement conditions

• while statement conditions, if present

Creating a Model with Embedded MATLAB™ Function
Decisions
In this topic, you examine an example model you can use to generate a model
coverage report for two Embedded MA TLAB functions. The following model
is named intersecting_rectangles and contains a single Stateflow block
with output data sent to a Scope block as shown.
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The preceding Stateflow chart has a state with a default transition and entry
and during actions. The state executes its entry action the first time that it
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is entered for the first time sample. E ach succeeding time sample calls the
during action of the active state.

The entry and during actions of state A call the Embedded MATLAB function
run_intersect_test , which appears as follows in the Embedded MATLAB
Editor:

run_intersect_test calls the function rect_intersect with two rectangle
arguments that each consist of coordinates for the lower left corner of the
rectangle (origin), and its width and height. The first rectangle is a test
rectangle, and the second is a stationar y rectangle. The coordinates for the
origin of the test rectangle are r epresented by the Stateflow data x1 and y1 ,
which are both initialized to -1. This means that x1 and y1 are 0 for the first
sample. The progression of rectangl e arguments during simulation is as
follows:
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In the preceding display, the stationary rectang le is shown in bold with a
lower left origin of (2,4) and a width and height of 2. At time t = 0 , the
first test rectangle has an origin of (0,0) and a width and height of 2. For
each succeeding sample, the origin of t he test rectangle is incremented by
(1,1) . The rectangles at sample times t = 2 , 3, and 4 intersect with the
test rectangle.

The function rect_intersect , as shown, checks to see if two rectangles
intersect.
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rect_intersect receives the two rectangle arguments from
run_intersect_test . It first calculates horizontal ( x) co ordinates for the
left and right sides, and vertical ( y) values for the top and bottom sides for
each rectangle and compares them in the nested if-else decisions shown.
The function returns a logical value of 1 if the rectangles intersect and 0 if
they do not.

Scope output during simulation, whic h plots the return value against the
sample time, confirms the intersecting rectangles for sample 2, 3, and 4.
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Understanding Embedded MATLAB™ Function Model
Coverage
Model coverage reports are generated during simulation if you specify them
(see “Making Model Coverage Reports” on page 19-53). When simulation is
finished, the model coverage report a ppears in a browser window. After the
summary for the model, the Details sec tion reports on each of the parts of
the model. Model coverage for the part s of the example model in “Creating
a Model with Embedded MATLAB™ Function Decisions” on page 17-23
appears in the following order:

• Model "intersecting_rectangles"

• Subsystem "Chart"

• Chart "Chart"

- Function rect_intersect

#1: function out = rect_int ersect(rect1,rect2)

#14: if (top1 < bottom2 || top2 < bottom1)

#17: if (right1 < left2 || right2 < left1

- Function "run_intersect_test"

#1: function out = run_intersect_test

The reports for the Embedded MATLAB functions rect_intersect and
run_intersect_test appear in alphabetical order as part of the report on
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their parent, the Stateflow block Chart . The reports on individual decisions
for each function appear in numerical li ne order. Line numbers are indicated
by the # character.

The following subtopics examine the m odel coverage report for the example
model in reverse order of the report. Reversing the order helps you make
sense of the summary information that appears at the top of each section.

Model Coverage for Embedded MATLAB™ Function
run_intersect_test
Model coverage for the Embedded MATLAB function run_intersect_test ,
which sends test rectangles to the function rect_intersect , appears in the
model coverage report as shown.
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The report on run_intersect_test begins with the function name
run_intersect_test , which links to an Embedded MATLAB Editor for
the function. Following the name is a li nk to the model coverage report for
the parent of run_intersect_test , the Stateflow chart Chart . Coverage
continues with a summary of the coverag e metrics for the function followed by
a code listing. The line number for the first line of the listing is highlighted in
bold red, which is actually a link to an analysis for that decision below.

The first line of every function receives coverage analysis indicative of the
decision to run the function. Its coverage here indicates that the function
run_intersect_test executed 8 out of 8 times for the samples taken at
0 through 7 seconds. Because this is the only decision in the function
run_intersect_test , coverage for it in the metrics table above indicates the
occurrence of 1 out of 1 possible outcomes. In this case, the only possible
outcome is function execution. In other words, the function was executed
during simulation.

Coverage for Embedded MATLAB™ Function rect_intersect
Model coverage for the Embedded MATLAB function rect_intersect , which
tests rectangles for intersection, app ears first in the model coverage report
as shown.
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The coverage metrics for rect_intersect include Decision, Condition, and
MCDC coverage. These metrics are best understood after you examine the
coverage for the decisions in rect_intersect highlighted in the listing below.

The listing for rect_intersect includes three highlighted line numbers.
The first line is highlighted as the decision on whether or not to execute the
function. Highlighted line numbers 14 and 17 indicate decisions in a nested
if-else statement. Notice that the condition right1 < left2 in line 17 is
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highlighted in red. This means that this condition did not test both the true
and false possible outcomes for this deci sion during simulation. Exactly which
of the outcomes was not tested is answered by the metrics for the decision in
line 17. The metrics for line 17 and the remaining decisions appear below
in numerical line order, and are accessed through the line number links in
the listing.

Coverage for Line 1. Coverage metrics for line 1 appear directly below the
listing for rect_intersect as shown.

The first line of every function receives coverage analysis indicative of
the decision to run the function in response to a call. The preceding table
indicates that rect_intersect executed. Coverage for this decision, which
is equivalent to decision D1 in the metrics table for rect_intersect , is
therefore 100%.

Coverage for Line 14. Coverage metrics for line 14 appear directly below
the coverage metrics for line 1 as shown.
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The Decisions analyzed table indicates that there are two possible outcomes
for the decision in line 14: false and true. 5 of 8 times the decision evaluated
false, and the remaining times (3) it evaluated true. Because both the true
and false outcome occurred during simul ation, Decision Coverage is 100%.

The following Conditions analyzed table sheds some light on the decision in
line 14. Because this decision consists of two conditions linked by a logical or
(|| ) operation, only one condition must evaluate true for the decision to be
true. Also, if the first condition evaluates to true, there is no need to evaluate
the second condition. The first condition, top1 < bottom2 , was evaluated 8
times, and was true twice. This means i t was necessary to evaluate the second
condition only 6 times. In only one case was the second condition true, so
that the total true occurrences for the decision equals 3, as reported in the
Decisions analyzed table.
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MCDC coverage looks for decision reve rsals that occur because one condition
outcome changes from T to F or from F to T. The table identifies all possible
combinations of outcomes for the cond itions that lead to a reversal in the
decision. The character x is used to indicate a condition outcome that is
irrelevant to the decision reversal. Re versing condition outcomes that are not
achieved during simulation are marked with a set of parentheses. There
are no parentheses, so all decision re versing outcomes occurred, and MCDC
Coverage is complete for this decision.

Coverage for rect_intersect Line 17. Coverage metrics for line 17 appear
directly below the coverage metrics for line 14, as shown.
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The line 17 decision if (right1 < left2 || right2 < left1) is nested in
the if statement of the line 14 decision and is evaluated only if the line 14
decision is false. Because the line 14 de cision evaluated false 5 times, line 17
is evaluated 5 times, 3 of which were false. Because both the true and false
outcomes were achieved, Decision Coverage for line 17 is 100%.

Because line 17, like line 14, has two conditions related by a logical OR
operator ( || ), condition 2 is tested only if condition 1 is false. Because
condition 1 tests false 5 times, condition 2 is tested 5 times. Of these, condition
2 tests true 2 times and false 3 times, w hich accounts for the two occurrences
of the true outcome for this decision.

Because the first condition of the line 17 decision does not test true, both
outcomes did not occur for that condition, and the Condition Coverage for the
first condition is highlighted with a ro se color. Because the first condition of
the line 17 decision does not test true, MCDC coverage is also highlighted
in the same way for a deci sion reversal based on the true outcome for that
condition.

Coverage for All rect_intersect Lines. Reviewing the coverage report
for each line of rect_intersect in the previous topics makes sense of the
coverage metrics reported at the begi nning of the model coverage report for
rect_intersect , which is as shown.
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Based on the model coverage reports for each line of rect_intersect , you
can draw these conclusions:

• There are five decision outcomes reported for rect_intersect in the line
reports: one for line 1 (execute), two for line 14 (true and false), and two for
line 17 (true and false). The decisi on coverage for each line shows 100%
coverage. This means that decision coverage for rect_intersect is 5 of
5, or 100%.

• There are four conditions reported for rect_intersect in the line reports.
Lines 14 and 17 each have two conditions, and each condition has two
condition outcomes (true and false), for a total of eight condition outcomes
in rect_intersect . All conditions tested for both the true and false
outcome, except for the first condition of line 17 ( right1 < left2 ). This
means that condition coverage for rect_intersect is 7 of 8, or 88%.

• The MCDC tables for each line list two cases of decision reversal for
each condition. Only the decision reversal from changing the condition 1
outcome from true to false did not o ccur during simulation. This means
that 3 of 4, or 75%, of the possible reversal cases were tested for during
simulation. Therefore, only three of a possible four reversals were observed
and coverage is 75%.
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Working with Structures and Bus Signals in Embedded
MATLAB™ Functio ns

In this section...

“About Structures in Embedded MA TLAB™ Functions” on page 17-37

“Defining Structures i n Embedded MATLAB™ Functions” on page 17-37

About Structur es in Embedded MATLAB™ Functions
Embedded MATLA B™ functions support MATLAB ® structures. You can
create structu res in top-level Embedded MATLAB functions in Stateflow ®

charts to inte rface with Simulink ® bus signals at input and output ports.
Simulink buse s appear inside the Embedded MATLAB function as structures;
structure out puts from the Embedded MATLAB function appear as buses.

You can also create structures as local and pers istent variables in top-level
functions an d subfunctions of Embedded MATLAB functions.

Defining Str uctures in Embedded MATLAB™ Functions
This section describes how to define structures in Embedded MATLAB
functions.

• “Rules for De fining Structures in Embedded MATLAB™ Functions” on
page 17-37

• “Defining S tructure Inputs and Outputs to Interface with Bus Signals” on
page 17-38

• “Defining L ocal and Persistent Structure Variables” on page 17-39

Rules for Defining Structures in Embedded MATLAB™ Functions
Follow thes e rules when defining structures in Embedded MATLAB functions
in Stateflo w charts:

• For each st ructure input or output in an Embedded MATLAB function,
you must de fine a Simulink.Bus object in the base workspace to specify its
type to the Simulink signal.
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• Embedded MATLAB structures cannot inherit their type from Simulink
signals.

• Embedded MATLAB functions support nonvirtual buses only (see “Virtual
and Nonvirtual Buses” in the Simulink User’s Guide).

• Structures cannot have scopes defined as Parameter or Constant.

Defining Structure Inputs and Outputs to Interface with Bus
Signals
When you create structure inputs in Embedded MATLAB functions, the
function determines the type, size, and complexity of the structure from the
Simulink input signal. When you create structure outputs, you must define
their type, size, and complexity in the Embedded MATLAB function.

You can connect Embedded MATLAB structure inputs and outputs to any
Simulink bus signal, including:

• Simulink blocks that output bus signals — such as Bus Creator blocks

• Simulink blocks that accept bus signals as input — such as Bus Selector
and Gain blocks

• S-Function blocks

• Other Embedded MATLAB functions

To define structure inputs and outputs in Embedded MATLAB functions in
Stateflow charts, follow these steps:

1 Create a Simulink bus object in the bas e workspace to specify the properties
of the structure you will create in the Embedded MATLAB function.

For information about how to create Simulink bus objects, see
Simulink.Bus in the Simulink Reference.

2 In the Embedded MATLAB Editor, open the Model Explorer by selecting
Tools > Model Explorer.

3 In the Model Explorer, follow these steps:

a In the Model Hierarchy pane, select the Embedded MATLAB function
in your Stateflow chart.
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b Add a data object, as described in “Adding Data Using the Model
Explorer” on page 7-4.

The Model Explorer adds a data object and opens a Properties dialog
box in its right-hand Dialog pane.

c In the Properties dialog box, enter the following information in the
General tab fields:

Field What to Specify

Name Enter a name for referencing the structure in the
Embedded MATLAB function. This name does not have to
match the name of the bus object in the base workspace.

Scope Select Input or Output .

Type Select Bus: <bus object name> from the drop-down
list.

Then, replace “ <bus object name>” with the name of the
Simulink.Bus object in the base workspace that defines
the structure. For example: Bus: inbus .

d To add or modify Simulink.Bus objects, click the Show data type

assistant button to display the Data Type Assistant. Then,
click the Edit button to bring up the Simulink Bus Types Editor (see
“Using Bus Objects” in the Simulink User’s Guide).

e Click Apply.

4 If your structure is an output (has scope of Output), define the output
implicitly in the Embedded MATLAB function to have the same type,
size, and complexity as its Simulink.Bus object, as described in “About
Structures in the Embedded MATLAB Subset” in the Embedded MATLAB
User’s Guide.

Defining L ocal and Persistent Structure Variables
You can define structures as local or persistent variables inside Embedded
MATLAB functions (see “Types of S tructures in the Embedded MATLAB
Subset” in the Embedded MATLAB User’s Guide).
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Building Targets

Targets You Can Build (p. 18-3) Describes the different targets you
can build

Choosing the Right Procedure to
Simulate a Model (p. 18-5)

Describes how to choose the right
procedure for simulation

Procedures for Simulation (p. 18-7) Describes procedures to follow for
simulation

Speeding Up Simulation (p. 18-15) Describes how to speed up simulation
for large models

Choosing the Right Procedure to
Generate Code for a Model (p. 18-18)

Describes how to choose the right
procedure for code generation

Procedures for Code Generation
(p. 18-20)

Describes procedures to follow for
code generation

Optimizing Generated Code
(p. 18-26)

Describes how to optimize code
generation using target options

Specifying Relative Paths for Custom
Code (p. 18-33)

Describes how to define relative
directory paths for custom code
integration

Choosing a Compiler (p. 18-35) Describes how to set up your own
compiler

Examples of Integrating Custom C
Code in Nonlibrary Models (p. 18-36)

Describes two examples of
integrating custom C code in
nonlibrary models

How to Build a Stateflow ® Custom
Target (p. 18-43)

Describes how to configure and build
a Stateflow ® custom target



18 Building Targets

What Happens During the Target
Building Process? (p. 18-48)

Describes what happens during the
target building process

Parsing Stateflow ® Charts (p. 18-49) Describes how the parser evaluates
graphical and nongraphical objects
in each Stateflow machine

Resolving Event, Data, and Function
Symbols in Stateflow ® Action
Language (p. 18-55)

Describes the process of resolving
undefined data, event, and graphical
function symbols

Error Messages When Parsing
Charts and Generating Code
(p. 18-58)

Describes the error messages that
can appear when you build a target
or parse a chart

Generated Code Files for Targets
You Build (p. 18-61)

Describes the code files that are
generated when you simulate your
model or generate code for it

Traceability of Stateflow ® Objects in
Generated Code (p. 18-66)

Describes how to navigate between
a line of generated code and its
corresponding object in a model
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Targets You Can Build

In this section...

“What Is a Simulink ® Code Generation Ta rget?” on page 18-3

“What Is a Stateflow ® Target?” on page 18-3

“Software Requirements for Bu ilding Targets” on page 18-4

What Is a Simulink ® Code Generation Target?
A Simulink ® code generation target is a speci fication of the generated code,
custom code, and build type you use in building an application or producing
generated code for a Simulink model . This model can include Stateflow ®

blocks, as well as oth er Simulink blocks.

What Is a Stateflow ® Target?
A Stateflow target is a spe cification of the generated code, custom code, and
build type you use in building an application or producing generated code
from the Stateflow blocks in a Simulink model.

The three types of Stateflow targets are:

• Simulation target (named sfun )

A simulation target is a specification of the generated code, custom code,
and build type you use for simulating Stateflow blocks in a Simulink model.
When you add a Stateflow block to a Si mulink model, you add a simulation
target named sfun to that model, by default.

You can simulate the Stateflow bl ocks in your Simulink model by
configuring the sfun target, which combines with the simulation
configuration for your entire model.

• Code generation target (named rtw )

A Stateflow code generation target is a s pecification of the generated code,
custom code, and build type you use when generating code for Stateflow
blocks in library models. This target specifies custom code options that
apply to a library model, but not your main model.
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Note Stateflow blocks in a nonlibrary model use the Real-Time Workshop ®

configuration settings of the Simulink code generation target.

When you build a Simulink code generation target, the information from
the Stateflow code generation target combines with the information for
the rest of the model. Inputs to and outputs from Stateflow blocks in a
library model can resolve only when a Stateflow target combines with the
Simulink target during the build process.

• Custom target (named anything but sfun or rtw )

A Stateflow custom target is a specifi cation of the generated code for the
Stateflow blocks you use in a model. After you collect the code, you can use
this code to build your own applications.

Software Requirements for Building Targets
To build targets for models with State flow blocks, you must have a license
for the software listed:

Target to Build Code Generation Software to Use

Simulation Stateflow ® Coder™

Code generation Stateflow Coder and Real-Time Workshop

Custom Stateflow Coder

The default target of Real-Time Worksho p code generation is generic real-time
(grt ). To build other code generation targ ets, you must have the appropriate
license. See “Available Targets” in the Real-Time Workshop User’s Guide
for more information.
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Choosing the Right Procedure to Simulate a Model

In this section...

“Guidelines for Simulation” on page 18-5

“Choosing the Right Procedure for Simulation” on page 18-5

Guidelines for Simulation
When you simulate a model, use the se guidelines to choose the right
procedure:

Do this step... When...

Speed up
simulation

You have a large model with many blocks.

See “Speeding Up Simulation” on page 18-15.

Include custom
code

You want to take advantage of legacy code that
augments model capabilities and also include custom
variables and functions that you share between your
custom code and Stateflow ® generated code.

Choose a custom
compiler

You use the UNIX ® version of Stateflow software or do
not wish to use the default lcc compiler.

See “Choosing a Compiler” on page 18-35.

Include custom
code only for
library charts

You want to provide custom code in a portable,
self-contained library for use in multiple models.

Choosing the Right Procedure for Simulation
To choose the right procedure for simula tion, find the highlighted block that
describes your goal and see the corresp onding section in “Procedures for
Simulation” on page 18-7.
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Procedures for Simulation

In this section...

“Starting Simulation” on page 18-7

“Integrating Custom C++ Code f or Simulation” on page 18-7

“Integrating Custom C Code for Nonlibrary Charts for Simulation” on page
18-9

“Integrating Custom C Code for Libr ary Charts for Simulation” on page
18-12

“Integrating Custom C Code for All Charts for Simulation” on page 18-12

Starting Simulation
Simulate your model in one of these ways:

• Click the play button in the toolbar of the Simulink ® model window or
the Stateflow ® Editor.

• Select Simulation > Start in the Simulink model wi ndow or the Stateflow
Editor.

Note You cannot simulate only the charts in a library model. To simulate a
library chart, you must create a link t o that chart in your main model and
then simulate the main model.

Integrating Custom C++ Code for Simulation
To integrate custom C++ code for simulation, perform these tasks:

Task 1: Prepare Code Files
You must perform these steps to prepare your custom C++ code for simulation:

1 Add a C function wrapper to your cus tom code. This wrapper function
executes the C++ code that you are including.

18-7



18 Building Targets

The C function wrapper should have this form:

int my_c_function_wrapper()
{

.

.

.
//C++ code
.
.
.
return result;

}

2 Create a header file that prototypes t he C function wrapper in the previous
step.

The header file should have this form:

int my_c_function_wrapper();

The value _cplusplus exists if your compiler supports C++ code. The
extern "C" wrapper specifies C linkage with no name mangling.

Task 2: Include Custom C++ Source and Header Files for
Simulation
To include custom C++ code for simulation, you must configure your
simulation target and select C ++ as the custom code language:

1 In the Stateflow Editor, select Tools > Open Simulation Target.

2 In the Simulation Target dialog, select the Custom Code pane.

3 Add your custom header file in the Include Code pane. Click Apply.

4 Add your custom C++ files in the Include Paths or Source Files pane.
Click Apply.

5 Make additional changes in the Simulation Target dialog, if necessary.
Click OK.
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6 In the Stateflow Editor, select Simulation > Configuration Parameters.

7 In the Configuration Para meters dialog, select the Real-Time Workshop
pane.

8 Select C++ from the Language pull-down menu. Click Apply.

9 Make additional changes in the Configuration Parameters dialog, if
necessary. Click OK.

Task 3: Choose a C++ Compiler
For instructions, see “Choosing a Compiler” on page 18-35.

Task 4: Simulate the Model
For instructions, see “Starti ng Simulation” on page 18-7.

Integrating Custom C Code for Nonlibrary Charts for
Simulation
To integrate custom C code that applies t o nonlibrary charts for simulation,
perform these tasks:

Task 1: Include Custom C Code in the Simulation Target
Specify custom code options in the simulation target for your model:

1 In the Stateflow Editor, select Tools > Open Simulation Target.

2 Select the Custom Code pane.

The custom code options appear.
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3 Specify your custom code in the tabbed panes.

Follow the guidelines in “Specifying Relative Paths for Custom Code” on
page 18-33.

• Include Code — Enter code lines (for example, #define TRUE 1 )
to include at the top of a generated header file that declares custom
functions and data in the generated code. These code lines appear at the
top of all generated source code files and are visible to all generated code.

Note When you include a custom header file, you must enclose the file
name in double quotes. For example, #include ''sample_header.h''
is a valid declaration for a custom header file.

Since the code you specify in this opti on appears in multiple source files
that link into a single binary, limitations exist on what you can include.
For example, do not include a glob al variable definition such as int x;
or a function body such as

void myfun(void)
{
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...
}

These code lines cause linking errors because their symbol definitions
appear multiple times in the source files of the generated code. You can,
however, include extern declarations of variables or functions such as
extern int x; or extern void myfun(void); .

• Include Paths — Enter a space-separated li st of the directory paths
that contain custom header files th at you include either directly (see
Include Code option) or indirectly i n the compiled target.

• Source Files — Enter a list of source files to compile and link into the
target. You can separate source files with a comma, a space, or a new
line.

• Libraries — Enter a space-separated list of static libraries that contain
custom object code to link into the target.

• Initialization Code — Enter code statements that execute once at
the start of simulation. Use this code to invoke functions that allocate
memory or perform other initia lizations of your custom code.

• Termination Code — Enter code statements that execute at the end of
simulation. Use this code to invoke fu nctions that free memory allocated
by the custom code or perform other cleanup tasks.

• Reserved Names — Enter the names of variables and functions in
Stateflow generated code that match t he names of variables or functions
specified in custom code. This action changes the name in the generated
code to avoid naming conflicts.

4 Select the option Use custom code settings for all libraries.

This option specifies that the custom code settings of the simulation target
for the main model apply to all charts contributed by library models.

5 Click OK to apply the options and close the dialog.

If you change one of your custom code options and want to force the target
rebuild to incorporate your changes, you must change one of the charts
slightly (this forces a rebuild when you simulate again), or go to the
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General pane of the Simulation Target dialog and select the Rebuild All
option.

Task 2: Simulate the Model
For instructions, see “Starti ng Simulation” on page 18-7.

Integrating Custom C Code for Library Charts for
Simulation
To integrate custom C code that applies only to library charts for simulation,
perform these tasks:

Task 1: Include Custom C Code in Simulation Targets for
Library Models
Specify custom code options in the simulation target for each library model
that contributes a chart to the main model:

1 Perform steps 1-3 in “Task 1: Include Custom C Code in the Simulation
Target” on page 18-9.

2 In the Custom Code pane, select the option Use local custom code
settings (do not inherit from main model).

This action ensures that each libra ry model retains its own custom code
settings during simulation.

3 Click OK to apply the options and close the dialog.

Task 2: Simulate the Model
For instructions, see “Starti ng Simulation” on page 18-7.

Integrating Custom C Code for All Charts for
Simulation
To integrate custom C code that applies to all charts for simulation, perform
these tasks:
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Task 1: Include Custom C Code in the Simulation Target for
the Main Model
Specify custom code options in the simulation target for your main model:

1 In the Stateflow Editor, select Tools > Open Simulation Target.

2 Select the Custom Code pane.

The custom code options appear.

3 Specify your custom code in the tabbed panes.

Follow th e guidelines in “Specifying Relative Paths for Custom Code” on
page 18-33.

Note See “Task 1: Include Custom C Code in the Simulation Target” on
page 18-9 for descriptions of the tabbed panes.

4 Select th e option Use custom code settings for all libraries.
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This option specifies that the custom code settings of the simulation target
for the main model apply to all charts contributed by library models.

5 Click OK to apply the options and close the dialog.

If you change one of your custom code options and want to force the target
rebuild to incorporate your changes, you must change one of the charts
slightly (this forces a rebuild when you simulate again), or go to the
General pane of the Simulation Target dialog and select the Rebuild All
option.

Task 2: Configure Simulation Targets for Library Models
Configure the simulation target for each library model that contributes a
chart to your main model:

1 In the Stateflow Editor, select Tools > Open Simulation Target.

2 In the Simulation Target dialog, select the Custom Code pane.

3 Uncheck the option Use local custom code settings (do not inherit
from main model).

This action ensures that library char ts inherit the custom code settings
of your main model.

4 Click OK to close the dialog.

Note Your main model has a simulation target, and each library model
has its own simulation target. The target for your main model controls the
simulation of all nonlibrary charts, and the target for each library model
controls the simulation of its own charts.

Task 3: Simulate the Model
For instructions, see “Starti ng Simulation” on page 18-7.
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Speeding Up Simulation

In this section...

“Configuring the Simulation Target for the Main Model” on page 18-15

“Configuring the Simulation Targe t for Library Models” on page 18-17

Configuring the Simulation Target for the Main Model
To simulate your model more quickly, disable simulation options as described
in the steps that follow:

1 In the Stateflow ® Editor, select Tools > Open Simulation Target.

The Simulation Target dialog appears.

2 Disable any of these code generation options:

• Enable debugging/animation — Deselect this option to disable chart
animation and debugging.

This option enables automatically when you use the Stateflow Debugger
to start a model simulation. You can also control chart animation
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separately in the Debugger. (The Stateflow Debugger does not work
with stand-alone and Real-Time Workshop ® code generation targets.
Therefore, you cannot generate debugging/animation code for these
targets, even if you enable this option.)

• Enable overflow detection (with debugging) — Deselect this option
to disable overflow detection of Stateflow data in the generated code.
Overflow occurs for data when a value is assigned to it that exceeds
the numeric capacity of its type.

Note The Enable overflow detection (with debugging) option is
important for fixed-point data. Fo r more information, see “Overflow
Detection for Fixed-Point Types” on page 11-10.

To detect overflow in data during simulation, you must also select the
Data Range check box in the Debugger window. See “Debugging Data
Range Violations” on page 19-26 for more details.

• Echo expressions without semicolons — Deselect this option to
disable run-time output in the MATLAB ® Command Window, such as
actions that do not terminate with a semicolon.

3 Select one of these build options:

• Stateflow Target (incremental) to rebuild only those portions of the
target corresponding to charts that you changed since the last build.
This default action takes place w henever you simulate your model.

• Rebuild All (including libraries) to rebuild the target, including chart
libraries, from scratch. Use this option if have changed your compiler or
updated your object files si nce the last simulation.

• Make without generating code to invoke the make process without
generating code. Use this option when you have custom source files that
you must recompile in an incremental build mechanism that does not
detect changes in custom code files.

4 Click OK to apply the options and close the dialog.
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Configuring the Simulation Target for Library Models
Perform the steps in “Configuring the Simulation Target for the Main Model”
on page 18-15 to configure the simulati on target for each library model that
contributes a chart to your main model.

Note Your main model has a simulation target, and each library model
has its own simulation target. The target for your main model controls the
simulation of all nonlibrary charts, and the target for each library model
controls the simulation of its own charts.
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Choosing the Right Procedure to Generate Code for a
Model

In this section...

“Guidelines for Code Generation” on page 18-18

“Choosing the Right Procedure fo r Code Generation” on page 18-18

Guidelines for Code Generation
When you generate code for a model, use these guidelines to choose the right
procedure:

Do this step... When...

Optimize
generated code

You want to improve readability of the code and reduce
the amount of memory storage required.

See “Optimizing Generated Code” on page 18-26.

Include custom
code

You want to take advantage of legacy code that
augments model capabilities and also include custom
variables and functions that you share between your
custom code and Stateflow ® generated code.

Choose a custom
compiler

You use the UNIX ® version of Stateflow software or do
not wish to use the default lcc compiler.

See “Choosing a Compiler” on page 18-35.

Include custom
code only for
library charts

You want to provide custom code in a portable,
self-contained library for use in multiple models.

Choosing the Right Procedure for Code Generation
To choose the right procedure for code generation, find the highlighted block
that describes your goal and see the co rresponding section in “Procedures
for Code Generation” on page 18-20.
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Procedures for Code Generation

In this section...

“Generating Code” on page 18-20

“Integrating Custom C++ Code for Code Generation” on page 18-20

“Integrating Custom C Code for Nonlibrary Charts for Code Generation” on
page 18-22

“Integrating Custom C Code for Library Charts for Code Generation” on
page 18-23

“Integrating Custom C Code for All Charts for Code Generation” on page
18-24

Generating Code
Generate code for your model in one of these ways:

• Use the keyboard shortcut Ctrl-B or Command-B.

• Click Build in the Real-Time Workshop pane of the Configuration
Parameters dialog.

See “Generated Code Files for Targets You Build” on page 18-61 for details
about the code you generate for your model and its directory structure.

Note You cannot generate code only for the charts in a library model. To
generate code for a library chart, you must create a link to that chart in your
main model and then generate code for that model.

Integrating Custom C++ Code for Code Generation
To integrate custom C++ code for Real-Time Workshop ® code generation,
perform these tasks:
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Task 1: Prepare Code Files
You must perform these steps to prepare your custom C++ code for Real-Time
Workshop code generation:

1 Add a C function wrapper to your cus tom code. This wrapper function
executes the C++ code that you are including.

The C function wrapper should have this form:

int my_c_function_wrapper()
{

.

.

.
//C++ code
.
.
.
return result;

}

2 Create a header file that prototypes t he C function wrapper in the previous
step.

The header file should have this form:

int my_c_function_wrapper();

The value _cplusplus exists if your compiler supports C++ code. The
extern "C" wrapper specifies C linkage with no name mangling.

Task 2: Include Custom C++ Source and Header Files for
Real-Time Workshop ® Code Generation
To include custom C++ code for Real-Ti me Workshop code generation, perform
these steps:

1 In the Stateflow ® Editor, select Simulation > Configuration
Parameters.
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2 In the Configuration Para meters dialog, select the Real-Time Workshop
pane.

3 Select C++ from the Language pull-down menu. Click Apply.

4 Select the Real-Time Workshop > Custom Code pane.

5 Add your custom header file to the Header file section. Click Apply.

6 Add your custom C++ files to the Include directories or Source files
section. Click Apply.

7 Make additional changes in the Configuration Parameters dialog, if
necessary. Click OK.

Task 3: Choose a C++ Compiler
For instructions, see “Choosing a Compiler” on page 18-35.

Task 4: Generate Code
For instructions, see “Generating Code” on page 18-20.

Integrating Custom C Code for Nonlibrary Charts for
Code Generation
To integrate custom C code that applies to nonlibrary charts for code
generation, perform these tasks:

Task 1: Include Custom C Code for Real-Time Workshop ® Code
Generation
Specify custom code options for Real-Time Workshop code generation of your
model:

1 In the Stateflow Editor, select Simulation > Configuration Parameters.

2 In the Configuration Para meters dialog, select Real-Time Workshop >
Custom Code.
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3 Enter information for custom header f iles, custom source files, directory
paths, and so on.

Follow the guidelines in “Specifying Relative Paths for Custom Code” on
page 18-33.

Note Custom code settings for simulation do not apply automatically to
Real-Time Workshop code generation. Be cause different custom code settings
can apply for code generation, you must enter the options separately in the
Configuration Parameters dialog.

Task 2: Generate Code
For instructions, see “Generating Code” on page 18-20.

Integrating Custom C Code for Library Charts for
Code Generation
To integrate custom C code that appl ies only to library charts for code
generation, perform these tasks:

Task 1: Include Custom C Code in Code Generation Targets
for Library Models
Specify custom code options in the State flow code generation target for each
library model that contributes a chart to your main model:

1 In the Stateflow Editor, select Tools > Open RTW Target.

2 In the target dialog, select the Custom Code pane.

3 Specify your custom code in the tabbed panes.

Follow the guidelines in “Specifying Relative Paths for Custom Code” on
page 18-33.
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Note See “Task 1: Include Custom C Code in the Simulation Target” on
page 18-9 for descriptions of the tabbed panes.

4 Select the option Use local custom code settings (do not inherit from
main model).

This action ensures that each libra ry model retains its own custom code
settings during code generation.

5 Click OK to apply the options and close the target dialog.

Task 2: Generate Code
For instructions, see “Generating Code” on page 18-20.

Integrating Custom C Code for All Charts for Code
Generation
To integrate custom C code that applie s to all charts for code generation,
perform these tasks:

Task 1: Include Custom C Code for Real-Time Workshop ® Code
Generation of the Main Model
Specify custom code options for Real-Time Workshop code generation of your
main model:

1 In the Stateflow Editor, select Simulation > Configuration Parameters.

2 In the Configuration Para meters dialog, select Real-Time Workshop >
Custom Code.

3 Enter information for custom header f iles, custom source files, directory
paths, and so on.

Follow the guidelines in “Specifying Relative Paths for Custom Code” on
page 18-33.
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Note Custom code settings for simulation do not apply automatically to
Real-Time Workshop code generation. Be cause different custom code settings
can apply for code generation, you must enter the options separately in the
Configuration Parameters dialog.

Task 2: Configure Code Generation Targets for Library Models
Configure the Stateflow code generation target for each library model that
contributes a chart to your main model:

1 In the Stateflow Editor, select Tools > Open RTW Target.

2 In the target dialog, select the Custom Code pane.

3 Uncheck the option Use local custom code settings (do not inherit
from main model).

This action ensures that library char ts inherit the custom code settings
of your main model.

4 Click OK to close the dialog.

Note Your main model uses the Real-Time Workshop configuration settings
of the Simulink ® code generation target, but ea ch library model has its own
Stateflow code generation target. The target for your main model controls the
code generation of all nonlibrary chart s, and the target for each library model
controls the code generation of its own charts.

Task 3: Generate Code
For instructions, see “Generating Code” on page 18-20.
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Optimizing Generated Code

In this section...

“Optimizing Real-Time Workshop ® Code Generation of the Main Model” on
page 18-26

“Optimizing the Code Generation Target of Each Library Model” on page
18-27

Optimizing Real-Time Workshop ® Code Generation
of the Main Model
To optimize Real-Time Workshop ® code generation for your main model,
perform these steps:

1 In the Stateflow ® Editor, select Simulation > Configuration
Parameters.

2 In the Configuration Para meters dialog, select the Optimization node.

3 In the Stateflow section of the Optimization pane, select from these
options:

• Use bitsets for storing state configuration — Reduces the amount
of memory tha t stores state configuration variables. However, it can
increase the amount of memory that stores target code if the target
processor does not include instructions for manipulating bitsets.

• Use bitsets for storing boolean data — Reduces the amount of
memory that stores Boolean variables. However, it can increase the
amount of me mory that stores target code if the target processor does
not includ e instructions for manipulating bitsets.

Note You cannot use bitsets when you generate code for these cases:

– an external mode simulation

– a target tha t specifies an explicit structure alignment
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• Minimize array reads using temporary variables — Minimizes
expensive array read operations by using temporary variables when
possible.

For example, the generated code

a[i] = foo();
if(a[i]<10 && a[i]>1) {

y = a[i]+5;
}else{
z = a[i];
}

becomes

a[i] = foo();
temp = a[i];
if(temp<10 && temp>1) {

y = temp+5;
}else{

z = temp;
}

Optimizing the Code Generation Target of Each
Library Model
To optimize the Stateflow code genera tion target of each library model that
contributes a chart to your mai n model, perform these steps:

1 In the Stateflow Editor, select Tools > Open RTW Target.

The target dialog appears.
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Note The option Stateflow Target builds code in a Stateflow code
generati on target.

2 In the General pane, select any of these coder options:

• Comments in generated code — Includes comments in the generated
code.

• Use bitsets for storing state configuration — Reduces the amount of
memory th at stores the variables. However, it can increase the amount
of memory that stores target code if the ta rget processor does not include
instruc tions for manipulating bitsets.

• Use bitsets for storing boolean data — Reduces the amount of
memory t hat stores Boolean variables. However, it can increase the
amount o f memory that stores target code if the target processor does
not inc lude instructions for manipulating bitsets.
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Note You cannot use bitsets when you generate code for these cases:

– an external mode simulation

– a target that specifies an explicit structure alignment

• Compact nested if-else using logical AND/OR operators —
Improves readability of generated c ode by compacting nested if-else
statements using logical AND ( &&) and OR (|| ) operators.

For example, the generated code

if(c1) {
if(c1) {

a1();
}

}

becomes

if(c1 && c2) {
a1();

}

and the generated code

if(c1) {
/* fall through to do a1() */

}else if(c2) {
/* fall through to do a1() */

}else{
/* skip doing a1() */
goto label1;

}
a1();
label1:

a2();

becomes
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if(c1 || c2) {
a1();

}
a2();

• Recognize if-elseif-else in nested if-else statements — Improves
readability of generated code by creating an if-elseif-else construct
in place of deeply nested if-else statements.

For example, the generated code

if(c1) {
a1();

}else{
if(c2) {

a2();
}else{

if(c3) {
a3();

}
}

}

becomes

if(c1) {
a1();

}else if(c2) {
a2();

}else if(c3) {
a3();

}

• Replace constant expressions by a single constant — Improves
readability by preevaluating consta nt expressions and replacing them
with a single constant. This optimization also eliminates dead code.

For example, the generated code

if(2+3<2) {
a1();
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}else {
a2(4+5);

}

becomes

if(0) {
a1();

}else {
a2(9);

}

in the first phase of this optimization. The second phase eliminates the
if statement, resulting in simply

a2(9);

• Minimize array reads using temporary variables — Minimizes
expensive array read operations by using temporary variables when
possible.

For example, the generated code

a[i] = foo();
if(a[i]<10 && a[i]>1) {

y = a[i]+5;
}else{

z = a[i];
}

becomes

a[i] = foo();
temp = a[i];
if(temp<10 && temp>1) {

y = temp+5;
}else{

z = temp;
}

18-31



18 Building Targets

• Preserve symbol names — (See note below before using.) Preserves
symbol names (names of states and data) in generated code, which is
useful when the target contains c ustom code that accesses Stateflow
data.

This option can generate duplicate C symbols if the source chart contains
duplicate symbols, for example, tw o substates with identical names.
Enable the next option to avoid duplicate substate names.

• Append symbol names with parent names — (See note below before
using.) Generates a state or data name by appending the name of the
item’s parent to the item’s name.

• Use chart names with no mangling — (See the note below before
using.) Preserves the names of chart entry functions so that you can
invoke them using h andwritten C code.

Note When you use the options Preserve symbol names, Append
symbol names with parent names, and Use chart names with
no mangling, the generated code does not mangle the symbol names
to make them unique. Because thes e options do not check for symbol
conflicts in generated code, use th em only when you have unique symbol
names in your model. Conflicts in generated names cause variable
aliasing and compilation errors.

3 Click OK to apply the options and close the dialog.
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Specifying Relative Paths for Custom Code

In this section...

“Why Use Relative Paths?” on page 18-33

“Searching Relative Paths” on page 18-33

“Path Syntax Rules” on page 18-33

Why Use Relative Paths?
If you specify paths and files with absolute paths and later move them, you
must change these paths to point to new locations. To avoid this problem, use
relative paths for custom code opti ons that specify paths or files.

Searching Relative Paths
Search paths exist relative to these directories:

• The current directory

• The model directory (if different from the current directory)

• The custom list of directories that you specify

• All the directories on the MATLAB ® search path, excluding the toolbox
directories

Path Syntax Rules
When you construct relative paths for cu stom code, follow these syntax rules:

• You can use the forward slash (/) or backward slash (\) as a file separator,
regardless of whether you are on a UNIX ® or PC platform. The makefile
generator parses these strings and returns the path names with the correct
platform-specific file separators.

• You can use tokens that evaluate in the MATLAB workspace, if you enclose
them with dollar signs ( $...$). For example, consider this path:

$mydir1$\dir1
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In this example, mydir1 is a string variable that you define in the MATLAB
workspace as 'd:\work\source\module1' . In the generated code, this
custom include path appears as:

d:\work\source\module1\dir1

• You must enclose paths in double quotes if they contain spaces or other
nonstandard path characters, such as hyphens (-).
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Choosing a Compiler

You must use a C or C++ compiler for compiling code that you generate.
The Windows ® version of Stateflow ® software ships with a C compiler
(lcc.exe ) and a make utility ( lccmake ). Both tools reside in the directory
matlabroot\sys\lcc . If you do not install any other compiler, lcc is the
default compiler that builds your targets.

If you use the UNIX ® version of Stateflow software or do not wish to use the
default lcc compiler, you must install your own target compiler. You can use
any compiler supported by MATLAB ® software.

Note For an updated list of supported compilers, go to:

http://www.mathworks.com/support/tech-notes/1600/1601.html

To install your own target compiler:

1 At the MATLAB prompt, type:

mex -setup

2 Follow the prompts for entering i nformation about your compiler.

Note If you select an unsupported compiler, this warning message appears
when you start a build that requires compilation:

The mex compiler specified using 'mex -setup' is not supported
for simulation builds. Using the lcc compiler instead.
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Examples of Integrating Custom C Code in Nonlibrary
Models

In this section...

“Preliminary Tasks” on page 18-36

“Example of Using Custom C Code to Define Global Constants” on page
18-36

“Example of Using Custom C Code to Define Global Constants, Variables,
and Functions” on page 18-38

Preliminary Tasks
Do these tasks before proceeding:

1 Download the zipped file from this location:
www.mathworks.com/company/newsletters/d igest/june99/stateflow/integration.zip

2 Extract the contents of the zipped fil e and store them in a single directory
on your local hard drive.

3 In the MATLAB ® Command Window, change the c urrent working directory
to the one where your new files reside.

Example of Using Custom C Code to Define Global
Constants
This example describes how to use custom C code to define constants that
apply to all charts in your model.

1 Open the file named example1.mdl in the Simulink ® model window.
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This chart also appears in the Stateflow ® Editor.

The chart contains two states A and B and one Simulink input named
input_data , which you can set to 0 or 1 by flipping the manual switch
during simulation.

2 In the Stateflow Editor, select Tools > Open Simulation Target.

3 In the Si mulation Target dialog, select the Custom Code pane.

The Include Code pane appears. In this pane, you enter #define and
#include statements.
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In this example, you define two constants named TRUEand FALSE to move
between states in your chart, instead of using the values 1 and 0. These
custom definitions improve the readabi lity of your chart actions. Note that
TRUEand FALSE are not Stateflow data objects.

Because the two custom definitions appear at the top of your generated
machine header file ( example1_sfun.h ), you can use TRUEand FALSE in all
charts that belong to this model.

Example of Using Custom C Code to Define Global
Constants, Variables, and Functions
This example describes how to use c ustom C code to define constants,
variables, and functions that apply to all charts in your model.

1 Open the file named example2.mdl in the Simulink model window.
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This chart also appears in the Stateflow Editor.

The char t contains two states A and B and three data objects: input_data ,
local_d ata , and out_data . The chart calls a custom function named
my_func tion and accesses a custom variable named myglobal .

2 In the Stateflow Editor, select Tools > Open Simulation Target.

3 In the Simulation Target dialog, select the Custom Code pane.

The Include Code pane appears.
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Note When you include a custom header file, you must enclose the file
name in double quotes.

The custom header file example2_hdr.h contains definitions of three
constants:

#define TR UE 1
#define FA LSE 0
#define MA YBE 2

This header file also contains declarations for the function my_function
and the variable myglobal :

extern int myglobal;
extern int my_function(int var1, double var2);

4 Select the Include Paths pane.
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The single period (.) indicates that all you r custom code files reside in the
same directory as example2.mdl .

Note To dir ect your makefile to look for header or source files in a
subdirect ory relative to the model directory, use this relative path name:

.\subdirectory_name

5 Select the Source Files pane.
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The custom source file example2_src.c compiles along with the Stateflow
generated code into a single S-function MEX file. See “S-Function
MEX-Files ” on page 18-61 for details.

Note To include a source file that resides in a subdirectory relative to the
model dir ectory, use this relative path name:

.\subdirectory_name\source_file.c

In this ex ample, you define three constants, a variable, and a function via
custom code options. Because the custom definitions appear at the top of your
generated machine header file ( example2_sfun.h ), you can access them in
all char ts that belong to this model.
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How to Build a Stateflow ® Custom Target

In this section...

“Adding a Stateflow ® Custom Target” on page 18-43

“Configuring a Custom Target” on page 18-44

“Building a Custom Target” on page 18-47

Adding a Stateflow ® Custom Target
To add a custom target, perform these steps:

1 In the Stateflow ® Editor, select Add > Target.

The Stateflow Custom Target dialog appears.

2 In the Name field, enter any name except the reserved names sfun and
rtw , and click OK.
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Configuring a Custom Target
To configure a custom target, perform these steps:

1 From the Stateflow Editor toolbar, click the Explore icon:

The Model Explorer appears with the Stateflow chart highlighted in the
Model Hierarchy pane.

2 In the Model Hierarchy pane, select the main model with the custom
target .
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The custom target (in this example, ctarg ) appears as a child of the main
model.

3 In the Contents pane, click the row for the custom target.

The Stateflow Custom Target dialog appears in the dynamic dialog on the
right.
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4 In the General pane of the Stateflow Custom Target dialog, select one of
these build options:

• Generate Code Only (non-incremental) to regenerate code for all
charts in the model.

• Rebuild All (including libraries) to rebuild the target, including
chart libraries, from scratch. Use this option if you have changed your
compiler or updated your object files since the last build.

• Make without generating code to invoke the make process without
generating code. Use this option when you have custom source files that
you must recompile in an incremental build mechanism that does not
detect changes in custom code files.

5 Specify code generation options for your custom target:

• I/O data format — Choose one of these options:

Select Use global input/output data to generate chart input and
output data as global variables.
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Select Pack input/output data into structures to generate structures
for chart input data and chart output data.

• Generate chart initializer function — Generates a function
initializer of data.

• Multi-instance capable code — Generates multiple instantiable chart
objects instead of a static definition.

For descriptions of the remaining options, see “Optimizing the Code
Generation Target of Each Library Model” on page 18-27.

6 Specify any custom code options in the Custom Code pane.

See “Task 1: Include Custom C Code in the Simulation Target” on page
18-9 for descriptions of the options.

Building a Custom Target
To build a custom target, click Execute in the General pane of the Stateflow
Custom Target dialog.

See “Generated Code Files for Targets You Build” on page 18-61 for details
about the code you generate for this target and its directory structure.
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What Happens During the Target Building Process?

The target building process takes place as follows:

1 The charts in your model parse to ensure that their logic is valid.

2 If any errors are found, diagnostic e rror messages appear in the Build
window, and the building process stops. See “Parsing Stateflow ® Charts” on
page 18-49 for more details.

3 If your charts p arse without error, code generation software generates C
code from your charts.

You can specify code generation options when you configure your targets.

4 Code generation software produces a m akefile to build the generated source
code into an executable program.

The makefile c an optionally build your custom code into the target.

5 The specified C compiler for the MATLAB ® environment and a make utility
build the code into an application for your target.
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Parsing Stateflow ® Charts

In this section...

“How the Stateflow ® Parser Works” on page 18-49

“Calling the Stateflow ® Parser” on page 18-49

“Parser Error Checking” on page 18-50

“Parsing Chart Example” on page 18-50

How the Stateflow ® Parser Works
When you begin a build for a target, the parser evaluates the graphical and
nongraphical objects in each Stateflow ® machine against the supported
Stateflow chart notation and the action language syntax.

Calling the Stateflow ® Parser
Apart from building a target, you can c all the Stateflow parser to check the
syntax of your Stateflow charts in one of these ways:

• Parse an individual chart in the Stateflow Editor by selecting Tools >
Parse Diagram.

• Parse a Stateflow machine (that is, al l the charts in a model), by selecting
Tools > Parse in the Stateflow Editor.

• When you simulate a model, build a target, or generate code for a target,
you automatically parse the Stateflow machine.

In all cases, the Stateflow Builder window appears when parsing is complete.
If parsing is unsuccessful (that is, an error appears), the Stateflow Editor
automatically appears with the highl ighted object causing the first parse
error. In the Stateflow Builder windo w, each error appears with a leading red
button icon. You can double-click any error in this window to bring its source
Stateflow chart to the front with the sou rce object highlighted. See “Parsing
Chart Example” on page 18-50 for example displays of parsing results in
the Stateflow Builder window.
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Note Parsing informational messages also appear in the MATLAB ®

Command Window.

Parser Error Checking
Using the Debugger, you can detect t he following run-ti me errors during
simulation:

• State Inconsistency — Most commonly caused by the omission of a default
transition to a substate in superstates with exclusive (OR) decomposition.
See “Debugging State Inconsistencies” on page 19-22.

• Transition Conflict — Occurs when ther e are two equally valid transition
paths from the same source. See “Debugging Conflicting Transitions” on
page 19-24.

• Data Range Violation — Occurs when minimum and maximum values
specified for a data in its properties dialog exceed their limits or when
fixed-point data overflows its base word size. See “Debugging Data Range
Violations” on page 19-26.

• Cyclical Behavior — Occurs when a step o r sequence of steps repeats itself
indefinitely. See “Debugging Cyclic Behavior” on page 19-28.

You can modify the notation to resolve run-time errors. See Chapter 19,
“Debugging and Testing” for more inform ation on debugging run-time errors.

Parsing Chart Example
For this chart, the steps that follow describe the parsing process and its
reported results.
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1 In the Stateflow Editor, select Tools > Parse Diagram to parse the chart.

This action selects State A in the upper left corner, and this message
appears in the pop-up window and the MATLAB Command Window.

2 Fix the p arse error.

In this example, there are two states with the name A. Edit the chart and
label the duplicate state with the text B.

The chart should look similar to this figure.
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3 In the Stateflow Editor, select Tools > Parse Diagram to reparse the chart.

This message appears in the pop-up menu and the MATLAB Command
Window.

4 Fix the parse error.

In this ex ample, you must label the state with the question mark with at
least a st ate name. Edit the chart and label the state with the text C.

The chart should look similar to this figure.
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5 In the Stateflow Editor, select Tools > Parse Diagram to reparse the chart.

This message appears in the pop-up window and the MATLAB Command
Window.

6 Fix the parse error.

In this example, the transition label contains a syntax error, where the
closing bracket of the c ondition is missing. Edit the chart and add the
closing bracket so that the label is E_one [C_one] .

7 In the Sta teflow Editor, select Tools > Parse Diagram to reparse the chart.

This message appears in the pop-up window and the MATLAB Command
Window.
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The chart now h as no parse errors.
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Resolving Event, Data, and Function Symbols in Stateflow ®

Action Language

In this section...

“Resolving Symbols” on page 18-55

“Symbol Autocreation Wizard” on page 18-56

Resolving Symbols
When you simulate a model, build a target, or generate code for a target, you
automatically parse the Stateflow ® machine (see “Parsing Stateflow ® Charts”
on page 18-49). During that time, if your chart does not resolve some of its
symbols, the following process determi nes whether to report parse errors for
the unresolved symbols or to continue generating code.
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For information about Simulink ® symbol resolution, see “Resolving Symbols”
and “Hierarchical Symbol Resolution” in the Simulink documentation.

Symbol Autocreation Wizard
You can use the Symbol Autocreation Wizard to add missing data and events
to your Stateflow charts. When you parse or simulate a chart, the Wizard
detects references to undefined data and events and presents a list of the
recommended data or events that you must define.

To accept, reject, or change a recommended item, do one of these steps:

• To accept an item, click on the space in front of the item under the check
mark column.

To accept all items, click CheckAll.

• To reject an item, leave it unchecked.

• To change an item, click on the icon under the T (type) column, or click on
the string under the Scope or Proposed Parent column for that item.

Each time you click on an icon or a string, the Wizard replaces the entry
with a different one. Keep clicking unt il the desired icon or string appears.

Column in the Wizard Choices W hen You Toggle
Between E ntries

T Data, Event

Scope Local, Input, Output

Proposed Parent Chart, Machine
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After you finish editing the symbol definitions, click Create to add the
symbols to the Stateflow hierarchy.
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Error Messages When Parsing Charts and Generating
Code

In this section...

“How Error Messages Appear” on page 18-58

“Parser Error Messages” on page 18-58

“Code Generation Error M essages” on page 18-59

“Compilation Error Messages” on page 18-60

How Error Messa ges Appear
Error messages appear in a dialog box and in the MATLAB ® Command
Window. Doubl e-clicking a message in the error dialog zooms the source
Stateflow ® chart to the object that caused the error.

Parser Error M essages
The Stateflow parser flags syntax errors in a chart. For example, using a
backward slas h (\) instead of a forward slash (/) to separate the transition
action from t he condition action generates a general parse error message.

Typical pars e error messages include:

• "Invalid sta te name xxx " or " Invalid event name yyy " or " Invalid
data name zzz "

A state, data , or event name contains a nonalphanumeric character other
than undersc ore.

• "State name xxx is not unique in objects #yyy and #zzz "

Two or more s tates at the same hierarchy level have the same name.

• "Invalid tra nsition out of AND state xxx (#yy) "

A transition originates from an AND (parallel) state.

• "Invalid int ersection between states xxx and yyy "
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Neighboring state borders intersect . If the intersection is not apparent,
consider the state to be a cornered recta ngle instead of a rounded rectangle.

• "Junction #x is sourcing more than one unconditional
transition "

More than one unconditional transi tion originates from a connective
junction.

• "Multiple history junctions in the same state #xxx "

A state contains more than one history junction.

Code Generation Error Messages
Typical code generation error messages include:

• "Failed to create file: modelName_sfun.c "

Code generation software does not have permission to generate files in
the current directory.

• "Another unconditional transition of higher priority shadows
transition #xx "

More than one unconditional inner, defa ult, or outer transition originates
from the same source.

• "Default transition cannot end on a state that is not a
substate of the originating state. "

A transition path startin g from a default transition segment in one state
completes at a destination state that is not a substate of the original state.

• "Input data xxx on left hand side of an expression in yyy "

A Stateflow expression assigns a value to an Input from Simulink data
object. By definition, a Stateflow expression cannot change the value of a
Simulink ® input.

• "Transition <number> has a condition action which is preceded
by a transition <number> containing a transition action. This
is not allowed as it results in out-of-order execution, i.e.,
the condition action of <number> gets executed before the
transition action of <number>."
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The preceding Stateflow chart flags this error. Assuming that there are no
other actions than those you indicate for the labeled transition segments
between state A and state B, the following pseudocode expresses the
sequence of execution that takes place when state A is active:

If (c1) {
if(c2) {

a2;
exit A;
a1;
enter B;

}
}

Because condition actions evaluate when their guarding condition is true
and transition actions evaluate when the transition is actually taken,
condition action a2 executes prior to transition action a1. This action
violates the apparent graphical sequence of executing a1 and then a2. In
this case, the preceding chart flag s the error during build time. To fix
this problem, you can change a1 and a2 to be both condition or transition
actions.

Compilation Error Messages
If compilation errors indicate undeclare d identifiers, verify that variable
expressions in state, condition, a nd transition acti ons are defined.

Consider, for example, an action language expression such as a=b+c . In
addition to entering this expression in the Stateflow chart, you must create
data objects for a, b, and c using the Model Explorer. If you do not define
the data objects, the parser assumes that these unknown variables appear
in the Custom code portion of the target, at the beginning of the generated
code. Because of this assumption, error messages appear at compile time and
not at code generation time.
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Generated Code Files for Targets You Build

In this section...

“S-Function MEX-Files” on page 18-61

“Directory Structure of Generated Files” on page 18-61

“Code Files for a Simulation Target” on page 18-62

“Code Files for a Code Generation Target” on page 18-64

“Code Files for a Custom Target” on page 18-64

“Makefiles” on page 18-64

S-Function MEX-Files
If you have a Simulink ® model named mainModel.mdl , which contains two
Stateflow ® blocks named chart1 and chart2 , you have a machine named
mainModel that parents two charts named chart1 and chart2 .

When you simulate the Stateflow chart for mainModel.mdl , you generate
code for mainModel.mdl that compiles into an S-function MEX-file. MEX-file
extensions are platform-specific, as described in the MATLAB ® software
documentation. For example, on 32-bit Windows ® PC platforms, you generate
a MEX-file for mainModel named mainModel_sfun.mexw32 . On Linux ® x86-64
platforms, you generate mainModel_sfun.mexa64 .

S-function MEX files appear in the c urrent MATLAB directory. You can
change this location at the MATLAB command prompt with a cd command.

Directory Structure of Generated Files
Most of the code files that you generate reside in a subdirectory of the
current MATLAB directory. This table s ummarizes the directory structure
for different targets:

Target Type Model Type Directory Under
<cwd>/slprj/_sfprj/<mainModel>

Simulation Main
(nonlibrary)

/_self/sfun/src
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Target Type Model Type Directory Under
<cwd>/slprj/_sfprj/<mainModel>

Simulation Library /<libModel>/sfun/src

Code
Generation

Main
(nonlibrary)

/_self/rtw/<sys_targ>/src

Code
Generation

Library /<libModel>/rtw/<sys_targ>/src

Custom Main
(nonlibrary)

/_self/<custom>/src

Custom Library /<libModel>/<custom>/src

These definitions apply to the table:

• <cwd> is the current MATLAB directory.

• <mainModel> is the name of the main model.

• <libModel> is the name of the library model.

• <sys_targ> is the type of system target (for example, grt or ert ).

• <custom> is the name of the custom target.

Note For code generation targets, the integrated C code for the entire model
resides in the subdirectory <mainModel>_<sys_targ>_rtw of the current
MATLAB directory. The executable file generated for the entire model resides
in the current MATLAB directory.

Code Files for a Simulation Target
For a simulation target, you generate these files:

• <model>_sfun.h is the machine header file. It contains:

- All the defined global variables needed for the generated code

- Type definition of the Stateflow mach ine-specific data structure that
holds machine-parented local data
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- External declarations of any Stateflow machine-specific global variables
and functions

- Custom code strings that you specify v ia the Simulation Target dialog box

• <model>_sfun.c is the machine source file. It includes the machine header
file and all the chart header files (described below) and contains:

- All the machine-parented event broadcast functions

- Simulink interface code

• <model>_sfun_registry.c is a machine registry file that contains
Simulink interface code.

• cn_<model>.h is the chart header file for the chart chartn , where n = 1, 2, 3,
and so on, depending on how many char ts your model has (see the following
note). This header file contains type definitions of the chart-specific data
structures that hold chart-parented local data and states.

• cn_<model>.c is the chart source file for chartn , where n = 1, 2, 3, and so
on, depending on how many charts your model has (see the following note).
This source file includes the machine header file and the corresponding
chart header file and also contains:

- Chart-parented data initialization code

- Chart execution code (state entry, during, and exit actions, and so on)

- Chart-specific Simulink interface code

Note Every chart is assigned a unique number at creation time. This
number appears as a suffix for the chart source and chart header file
names for every chart (where n = 1, 2, 3, and so on, depending on how
many charts your model has).

For library models, a static library file named <libModel>_sfun resides in
the same directory as the source code. The file extension depends on the
platform. (On a Windows operating system, it is <libModel>_sfun.lib , but
on a UNIX ® operating system, it is <libModel>_sfun.a .)
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Code Files for a Code Generation Target
For a code generation target, you generate integrated C code for the entire
model:

• <model>.h

• <model>.c

You also generate intermediate code files during the target building process:

• <model>_rtw.tlh

• <model>_rtw.tlc

• cn_<model>.tlh

• cn_<model>.tlc

Other auxiliary files can appear depe nding on the type of system target you
choose.

Code Files for a Custom Target
For a custom target, you generate these files:

• <model>_<custom>.h where <custom> is the name of the custom target.

• <model>_<custom>.c where <custom> is the name of the custom target.

• cn_<model>.h is the chart header file for the chart chartn , where n = 1,
2, 3, and so on, depending on how many charts your model has. This file
contains type definitions of the char t-specific data structures that hold
chart-parented local data and states.

• cn_<model>.c is the chart source file for chartn , where n = 1, 2, 3, and so
on, depending on how many charts your model has. This chart source file
includes the machine header file and the corresponding chart header file.

Makefiles
You generate makefiles for your model th at are platform and compiler-specific.
On UNIX platforms, you generate a gmake-compatible makefile named
mainModel_sfun.mku that compiles all your generated code into an
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executable. On PC platforms, you generate an ANSI-C compiler-specific
makefile based on your C-MEX setup:

Compiler Makefile Symbol Definition
FIle

Microsoft ® Visual C++ ® mainModel_sfun.mak mainModel_sfun.def
(required to build
S-function MEX-files)

Open Watcom mainModel_sfun.wmk None

lcc-win32 (default
ANSI-C compiler)

mainModel_sfun.lmk None

Note For an updated list of supported PC compilers, go to
http://www.mathworks.com/support/tech-notes/1600/1601.html .
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Traceability of Stateflow ® Objects in Generated Code

In this section...

“What Is Traceability?” on page 18-66

“Traceability Require ments” on page 18-66

“Traceable Stateflow ® Objects” on page 18-66

“When to Use Traceability” on page 18-67

“Basic Workflow for Using Traceability” on page 18-68

“Examples of Using Traceability” on page 18-68

“Format of Traceability Comments” on page 18-78

What Is Traceability?
Traceability is the abili ty to navigate between a line of generated code and its
corresponding object. For example, you can click a hyperlink in a traceability
comment to go from that line of code to the object in the model. You can also
right-click an object in y our model to find the line i n the code that corresponds
to the object. This two-way navigation is known as bidirectional traceability.

See “Tracing Generated Code Back to Your Simulink ® Model” in the Real-Time
Workshop ® User’s Guide for information abo ut how traceability works for
Simulink blocks.

Traceability Requirements
To enable traceability comments, you must have a license for Real-Time
Workshop ® Embedded Coder™ software. The se comments appear only in code
that you generate for an embedded real-time ( ert ) based target.

Traceable Stateflow ® Objects
Bidirectional traceability is s upported for these Stateflow ® objects:

• States

• Transitions
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• Embedded MATLAB™ functions

Note Traceability is not supported for M-files that you call from an
Embedded MATLAB function.

• Truth Table blocks and truth table functions

• Graphical functions

Traceability in one direction is supp orted for these Stateflow objects:

• Events (code-to-model)

Code-to-model traceability works for explicit events, but not implicit events.
Clicking a hyperlink for an explicit event in the generated code highlights
that item in the Contents pane of the Model Explorer.

• Junctions (model-to-code)

Model-to-code traceability works for junctions with at least one outgoing
transition. Right-clicking such a junc tion in the Stateflow Editor highlights
the line of code that corresponds to th e first outgoing transition for that
junction.

Note Embedded MATLAB Function blocks that you insert directly in
a Simulink model are also traceable . For more information, see “Using
Traceability in Embedded MATLAB Function Blocks” in the Simulink
software documentation.

When to Use Traceability

Comments for Large-Scale Models
Use traceability when you want to gene rate commented code for a large-scale
model. You can identify chart objects in the code and avoid manually entering
comments or descriptions.
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Validation of Generated Code
Use traceability when you want to validate generated code. You can identify
which chart object corresponds to a particular line of code and keep track of
code from different objects that you have or have not reviewed.

Basic Workflow for Using Traceability
The basic workflow for using traceability is:

1 Open your model, if necessary.

2 Define your system target file to be an embedded real-time ( ert ) target.

3 Enable and configure the traceability options.

4 Generate the source code and header files for your model.

5 Do one or both of these steps:

• Trace a line of generated code to the model.

• Trace an object in the model to a line of code.

Examples of Using Traceability

Bidirectional Traceability for States and Transitions
You can see how bidirectional traceabil ity works for states and transitions in
the sf_car demo by doing these steps:

1 Type sf_car at the MATLAB ® prompt.

2 In the Simulink model window or the Stateflow Editor, select Simulation
> Configuration Parameters.

3 In the Real-Time Workshop pane, go to the Target selection section
and enter ert.tlc for the system target file. Click Apply in the lower
right corner of the window.
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Note Traceability comments appear in ge nerated code only for embedded
real-time targets.

4 In the Real-Time Workshop > Report pane, select the Create code
generation report option.

This action automatically selects the Launch report automatically and
Code-to-model options.

5 Select the Model-to-code option in the Navigation section. Then click
Apply.

This action automatically selects all options in the Traceability Report
Contents section.

Note For large models that contain over 1000 blocks, disable the
Model-to-code option to speed up code generation.

6 Go to the Real-Time Workshop > Interface pane. In the Software
environment section, select the continuous time option. Then click
Apply.

Note Because this demo model contains a block with a continuous sample
time, you must perform this step before generating code.

7 In the Real-Time Workshop pane, click Build in the lower right corner.

This action generates source code and header files for the sf_car model
that contains the shift_logic chart. After the code generation process is
complete, the code generation re port appears automatically.

8 Click the sf_car.c hyperlink in the report.

9 Scroll down through the code to see the traceability comments.
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Note The line numbers shown above can differ from the numbers that
appear in your code generation report.

10 Click the <S5>:2 hyperlink in this traceability comment:

/* During 'gear_state': '< S5>: 2' */

In the Stateflow Editor, the object gear_state appears highlighted.
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11 Click the <S5>:12 hyperlink in this tra ceability comment:

/* Transition: '< S5>: 12' */

In the Stateflow Editor, the correspondi ng transition appears highlighted.
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Note To remove highlighting from an object in the Stateflow Editor, select
View > Remove Highlighting.

12 You can also trace an object in the model to a line of generated code. In the
Stateflow Editor, right-click the object gear_state and select Real-Time
Workshop > Navigate to Code from the context menu.

The code for that state appears highlighted in sf_car.c .
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13 In the Stateflow Editor, right-click the transition with the condition [speed
> up_th] and select Real-Time Workshop > Navigate to Code from
the context menu.

The code for that transition appears highlighted in sf_car.c .
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Note For a list of all Stateflow objects in your model that are traceable, click
the Traceability Report hyperlink in the code generation report.

See “Creating and Using a Code Generation Report” in the Real-Time
Workshop Embedded Coder User’s Guide for more information about the
code generation report.

Bidirectional Traceability for Truth Table Blocks
You can see how bidirectional traceability works for a Truth Table block in the
sf_climate_control demo by doing these steps:

1 Type sf_climate_control at the MATLAB prompt.

2 Complete steps 2–5 in “Bidirecti onal Traceability for States and
Transitions” on page 18-68.

3 In the Real-Time Workshop pane of the Configurati on Parameters dialog,
click Build in the lower right corner.

The code generation report appears automatically.

4 Click the sf_climate_control.c hyperlink in the report.

5 Scroll down through the code to see the traceability comments.
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Note The lin e numbers shown above can differ from the numbers that
appear in yo ur code generation report.

6 Click the <S1>:1:45 hyperlink in this traceability comment:
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/* Action '3': '< S1>: 1: 45' */

In the Truth Table Editor, row 3 of the A ction Table appears highlighted.

7 You can also trace a condition, decision, or action in the table to a line of
generated code. For example, right-click a cell in the column D2 and select
Real-Time Workshop > Navigate to Code from the context menu.

The code for that decision appears highlighted in sf_climate_control.c .
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Note To select the Real-Time Workshop > Navigate to Code option for
a condition, decision, or action, right-click a cell in the row or column that
corresponds to that truth table element.

Bidirectional Traceability for Graphical Functions
You can see how bidirectional traceabil ity works for graphical functions in the
sf_clutch demo by doing these steps:

1 Type sf_clutch at the MATLAB prompt.

2 Complete steps 2–6 in “Bidirecti onal Traceability for States and
Transitions” on page 18-68.

3 Go to the Solver pane in the Configuration Parameters dialog. In the
Solver options section, select Fixed-step in the Type field. Then click
Apply.

Note Because this demo model does not work with variable-step solvers,
you must perform this step before generating code.

4 In the Real-Time Workshop pane of the Configurati on Parameters dialog,
click Build in the lower right corner.

The code generation report appears automatically.

5 Click the sf_clutch.c hyperlink in the report.

6 Scroll down through the code to see the traceability comments.
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Note The line numbers shown above can differ from the numbers that
appear in your code generation report.

7 Click the <S1>:3 hyperlink in this traceability comment:

/* Graphical Function 'getSlipTorque': '< S1>: 3' */

In the Stateflow Editor, the graphical function getSlipTorque appears
highlighted.
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8 You can also trace a graphical function in the Stateflow Editor to a line of
generated code. For example, right-click the graphical function detectSlip
and select Real-Time Workshop > Navigate to Code from the context
menu.

The code for that graphical function appears highlighted in sf_clutch.c .
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Code-to-Model Traceability for Events
You can see how code-to-model traceability works for events in the
sf_security demo by doing these steps:

1 Type sf_security at the MATLAB prompt.

2 Complete steps 2–6 in “Bidirecti onal Traceability for States and
Transitions” on page 18-68.

3 In the Real-Time Workshop pane of the Configurati on Parameters dialog,
click Build in the lower right corner.

The code generation report appears automatically.

4 Click the sf_security.c hyperlink in the report.

5 Scroll down through the code to see the following traceability comment.
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Note The line numbers shown above can differ from the numbers that
appear in your code generation report.

6 Click the <S8>:56 hyperlink in this tra ceability comment:

/* Event: '< S8>: 56' */

In the Contents pane of the Model Explorer, the event Sound appears
highlighted.
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Model-to-Code Traceability for Junctions
You can see how model-to-code traceability works for junctions in the sf_abs
demo by doing these steps:

1 Type sf_abs at the MATLAB prompt.

2 Complete steps 2–6 in “Bidirecti onal Traceability for States and
Transitions” on page 18-68.

3 Go to the Solver pane in the Configuration Parameters dialog. In the
Solver options section, select Fixed-step in the Type field. Then click
Apply.

Note Because this demo model does not work with variable-step solvers,
you must perform this step before generating code.

4 In the Real-Time Workshop pane, click Build in the lower right corner.

The code generation report appears automatically.

5 Open the AbsoluteValue chart in the Stateflow Editor.

6 Right-click the left junction and select Real-Time Workshop > Navigate
to Code from the context menu.
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The code for the first outgoing transition of that junction appears
highlighted in sf_abs.c .
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Format of Traceability Comments
The format of a traceability comment depends on the Stateflow object type.

State

Syntax.

/* <ActionType> '<StateName>': '< Obj ect Hyper l i nk>' */

Example.

/* During 'gear_state': '< S5>: 2' */

This comment refers to the during action of the state gear_state , which has
the hyperlink <S5>:2 .

Transition

Syntax.

/* Transition: '< Obj ect Hyper l i nk>' */

Example.

/* Transition: '< S5>: 12' */

This comment refers to a transition, which has the hyperlink <S5>:12 .
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Embedded MATLAB™ Function

Syntax.

/* Embedded MATLAB Function '<Name>': '< Obj ect Hyper l i nk>' */

Within the inlined code for an Embedded MATLAB function, comments that
link to individual lines of the function have the following syntax:

/* '< Obj ect Hyper l i nk>' */

Examples.

/* Embedded MATLAB Function 'test_function': '< S50>: 99' */

/* '< S50>: 99: 20' */

The first comment refers to the Embedded MATLAB function named
test_function , which has the hyperlink <S50>:99 .

The second comment refers to line 20 of the Embedded MATLAB function
in your chart.

Truth Table Block

Syntax.

/* Truth Table Function '<Name>': '< Obj ect Hyper l i nk>' */

Within the inlined code for a Truth Table block, comments for conditions,
decisions, and actions have the following syntax:

/* Condition '#<Num>': '< Obj ect Hyper l i nk>' */
/* Decision 'D<Num>': '< Obj ect Hyper l i nk>' */
/* Action '<Num>': '< Obj ect Hyper l i nk>' */

<Num>is the row or column number that appears in the Truth Table Editor.

Examples.

/* Truth Table Function 'truth_table_default': '< S10>: 100' */
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/* Condition '#1': '< S10>: 100: 8' */
/* Decision 'D1': '< S10>: 100: 16' */
/* Action '1': '< S10>: 100: 31' */

The first comment refers to a Truth Table block named truth_table_default ,
which has the hyperlink <S10>:100 .

The other three comments refer to elements of that Truth Table block.
Each condition, decision, and action in the Truth Table block has a unique
hyperlink.

Truth Table Function
See “Truth Table Block” on page 18-79 for syntax and examples.

Graphical Function

Syntax.

/* Graphical Function '<Name>': '< Obj ect Hyper l i nk>' */

Example.

/* Graphical Function 'hello': '< S1>: 123' */

This comment refers to a gra phical function named hello , which has the
hyperlink <S1>:123 .

Event

Syntax.

/* Event: '< Obj ect Hyper l i nk>' */

Example.

/* Event: '< S3>: 33' */

This comment refers to an event, which has the hyperlink <S3>:33 .
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Debugging Stateflow ® Charts
(p. 19-3)

Describes the parts of the Debugging
window during debugging

Debugging Run-Time Errors
Example (p. 19-16)

Shows you how to debug run-time
errors in Stateflow ® charts with an
example model

Debugging State Inconsistencies
(p. 19-22)

Describes how to detect and debug
state inconsistencies due to faulty
Stateflow chart notation

Debugging Conflicting Transitions
(p. 19-24)

Describes how to detect and debug
conflicting transitions — that is,
transitions that are equally valid
during execution

Debugging Data Range Violations
(p. 19-26)

Describes how to debug for
occurrences of the value of a data
object exceeding its maximum value
or dropping below its minimum
value

Debugging Cyclic Behavior (p. 19-28) Shows you how the Stateflow
Debugging window detects
algorithms that lead to infinite
recursions and looping caused by
event broadcasts

Watching Data Values with
Debuggers (p. 19-32)

Shows you a variety of ways that
you can keep track of the values for
Stateflow data and state activity
during simulation
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Monitoring Test Points in Stateflow ®

Charts (p. 19-38)
Shows you how to specify local data
or states as test points that you
can plot with a floating scope or log
to the MATLAB ® base workspace
during simulation

Understanding Model Coverage for
Stateflow ® Charts (p. 19-52)

Describes how the Model Coverage
tool determines the extent to which a
model test case exercises simulation
control flow paths through a model
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Debugging Stateflow ® Charts

In this section...

“Opening the Stateflow ® Debugger” on page 19-3

“Animating Stateflow ® Charts” on page 19-4

“Setting Breakpoints for Debugging” on page 19-7

“Setting Error Checking in the Debugging Window” on page 19-11

“Starting Simulation in the Debugging Window” on page 19-12

“Controlling the Execution Rate in the Debugging Window” on page 19-14

“Setting the Output Display Pane” on page 19-14

Opening the Stateflow ® Debugger
To open the Stateflow ® Debugging window, follow these steps:

1 In the Stateflow Editor, select Tools > Debug.

The Stateflow Debugging window opens.
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Animating Stateflow ® Charts
During simulation, you can anima te Stateflow charts in a Simulink ® model to
provide visual verification that your chart behaves as expected. Animation
highlights objects in Stateflow charts as they execute. You can animate charts
during simulation in two contexts:

• In normal mode on the host machine where you run MATLAB ® and
Simulink software (see “Animating Stateflow ® Charts in Normal Mode”
on page 19-4)

• In external mode on a target machine where your generated code runs (see
“Animating Stateflow ® Charts in External Mode” on page 19-5)

Animati ng Stateflow ® Charts in Normal Mode
During simulation in normal mode on a host machine, you can animate states
and transitions in a Stateflow chart. Follow these steps:

1 Open the Stateflow chart you want to animate.

2 In the S tateflow Editor, select Tools > Debug to open the Stateflow
Debugging window.
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3 In the Animation section of the Debugging window, select Enabled.

4 Control the speed of animation by entering a value in the Delay field, as
follows:

• For the fastest animation, select a value of 0 seconds.

• For the slowest animation, select a value of 1 second.

5 Start simulation.

The Stateflow chart highlights sta tes and transitions as they execute
during simulation.

Animating Stateflow ® Charts in External Mode
You can animate Stateflow charts in external mode — the mode in which
Real-Time Workshop ® code generation software es tablishes a communications
link between a Simulink model and cod e executing on a target system (see
“External Mode” in the Real-Time Work shop User’s Guide). In external mode,
you can animate states in Stateflow charts, and view test point signals in a
floating scope or signal viewer.

• “Animating States During Simulation in External Mode” on page 19-5

• “Viewing Test Point Data in Floating Scopes and Signal Viewers” on page
19-7

Animating States During Simulation in External Mode. To animate
states in Stateflow charts in external mode, follow these steps:

1 Load the Stateflow chart you want to animate to the target machine.

2 In the Stateflow Editor, select Tools > Debug to open the Stateflow
Debugging window.

3 In the Animation section of the Debugging window, select Enabled.

4 In the Stateflow Editor, select Simulation > Configuration Parameters.

5 In the left Select pane, select Real-Time Workshop > Interface.
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6 In the Data exchange section of the right pane, select External mode from
the drop-down menu in the Interface field and click OK.

7 In the Simulink model that contains the chart, select Tools > External
Mode Control Panel.

8 In the External Mode Control Panel dialog box, click the Signals &
Triggering button.

9 In the External Signal & Triggering dialog box, set these parameters:

In: Select:

Signal selection
pane

Stateflow chart block you want to animate

Trigger pane Arm when connecting to target check box

Trigger pane normal from drop-down menu in Mode field

10 Build the model to generate an executable file.

11 Start the target in the background by entering the following command at
the MATLAB prompt:

! model_name.exe -w &

For example, if the name of your model is my_control_sys , enter this
command:

!my_control_sys.exe -w &

Note -w allows the target code to wait for the Simulink model connection

12 In the Simulink model editor, select Simulation > External, and then
select Simulation > Connect to Target.

13 Start simulation.

The Stateflow chart will highlight states as they execute.
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Viewing Test Point Data in Floating Scopes and Signal Viewers. When
you simulate Stateflow charts in external mode, you can view test point data
in floating scopes and signal viewers. I n Stateflow charts, you can designate
local data and states to be test points.

To view test point data during simulatio n in external mode, follow these steps:

1 Open the Model Explorer and for each data you want to view, follow these
steps:

a In the left Model Hierarchy pane, select the state or local data of interest.

b In the right Dialog pane, select the Test point check box.

2 From a floating scope or signal viewer, click the signal selection button:

The Signal Selector dialog box opens.

3 In the Signal Selector Model hierarchy pane, select the Stateflow chart.

4 In the Signal Selector Contents pane, list Testpointed signals only and
check the test point signals you want to view.

5 Simulate the model in external mode as described in “Animating States
During Simulation in External Mode” on page 19-5.

The scope or viewer displays the values of the test point signals as the
simulation runs.

Setting Breakpoints for Debugging
A breakpoint indicates a point at which the Stateflow Debugging window
halts execution of a simulating Statefl ow chart. At this time, you can inspect
Stateflow data and the MATLAB workspace and examine the status of a
simulating Stateflow chart.

The Stateflow Debugging window supports global and local breakpoints.
Global breakpoints halt execution on any occurrence of the specific type of
breakpoint. Local breakpoints hal t execution on a specific object.
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Setting Global Breakpoints
Use the Breakpoint controls in the Stateflow Debugging window to specify
global breakpoints. When a global breakpoint is encountered during
simulation, execution stops and the Debugger takes control. Select any or all
of these breakpoints:

• Chart Entry — Simulation halts on chart entry.

• Event Broadcast — Simulation halts when an event is broadcast.

• State Entry — Simulation halts when a state is entered.

These breakpoints can be changed during run-time and are immediately
enforced. When you save a Stateflow cha rt, the breakpoint settings are saved
with it.

Global breakpoints can be changed during run-time and are immediately
enforced. When you save the Stateflow c hart, all the Stateflow Debugging
window settings (including breakpoin ts) are saved, so that the next time you
open the model, the breakpoints are as you left them.

Setting Local Breakpoints
You can set breakpoints for specific state actions, transition s, function calls,
and event broadcasts in a Stateflow chart.

1 Open the properties dialog of the object for which you want to set a
breakpoint, as follows:

a Right-click the object from one of these sources:

Right-Click In:Object

Stateflow Chart Model Explorer

State

Transition
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Right-Click In:Object

Stateflow Chart Model Explorer

Function

Event

b From the resulting pop-up menu, select Properties.

A dialog box appears for setting the properties of the object.

2 In the properties dialog box, select fro m the following breakpoints options:

For: Select:

States State During — Stop execution before performing the
state during actions.

State Entry — Stop execution before performing the
state entry actions.

State Exit — Stop execution before performing the state
exit actions.

Transitions When Tested — Stop execution before testing the
transition to see if it is a valid path.

When Valid — Stop execution after the transition tests
valid, but before taking the transition.

Functions Function Call — Stop execution before calling the
function.

Events Start of Broadcast — Stop execution before
broadcasting the event.

End of Broadcast — Stop execution after a Stateflow
object reads the event.
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Disabling All Breakpoints
To disable all breakpoints in the Debugger window, select the check box
Disable all.

Clearing All Breakpoints
There is no button or check box in the Debugger window to clear breakpoints.
To find and clear all breakpoints without disabling them, you must use a
set of Stateflow API commands as s hown below. (See the Stateflow API
documentation for more information.)

% get a handle for the root object
rootObject = find(sfroot,'-isa','Stateflow.Machine','Name',model);

% find all states, transitions, data, and charts
stateObjects = rootObject.find('-isa','Stateflow.State');
transitionObjects = rootObject.find('-isa','Stateflow.Transition');
dataObjects = rootObject.find('-isa','Stateflow.Data');
chartObjects = rootObject.find('-isa','Stateflow.Chart');

% for all states, clear their breakpoints
for i = 1:size(stateObjects,1)
stateObjects(i).Debug.Breakpoints.OnEntry = 0;
stateObjects(i).Debug.Breakpoints.OnDuring = 0;
stateObjects(i).Debug.Breakpoints.OnExit = 0;
stateObjects(i).Machine.Debug.BreakOn.ChartEntry = 0;
stateObjects(i).Machine.Debug.BreakOn.EventBroadcast = 0;
stateObjects(i).Machine.Debug.BreakOn.StateEntry = 0;
end

% for all transitions, clear their breakpoints
for i = 1:size(transitionObjects,1)
transitionObjects(i).Debug.Breakpoints.WhenTested = 0;
transitionObjects(i).Debug.Breakpoints.WhenValid = 0;
end

% for all data, clear their breakpoints
for i = 1:size(dataObjects,1)
dataObjects(i).Debug.Watch = 0;
end
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% for all charts, clear their breakpoints
for i = 1:size(chartObjects,1)
chartObjects(i).Debug.Breakpoints.OnEntry = 0;
end

The first command returns a handle to the machine object that represents
the top level of the Stateflow hierarchy. The next four commands use the API
method find to specify the type of object to find. For example, the command

stateObjects = rootObject.find(`-isa','Stateflow.State')

searches through the rootObject and returns an array listing of all state
objects in your model. (See Finding Objects and Properties in the Stateflow
API documentation.)

You can also define the properties of Sta teflow objects. For example, you can
clear all breakpoints in your model by se tting those property values to zero for
all states, transitions, data, and charts as shown in the code.

Setting Error Checking in the Debugging Window
The options in the Error checking options section of the Stateflow
Debugging window insert generated code in the simulation target to provide
breakpoints to catch different typ es of errors that might occur during
simulation. Select any or all of the following error checking options:

• State inconsistency — Check for state inconsistency errors that are
most commonly caused by the omissi on of a default transition to a
substate in superstates with XOR de composition. See “Debugging State
Inconsistencies” on page 19-22 for a complete description and example.

• Transition Conflict — Check whether there are two equally valid
transition paths from the same sou rce at any step in the simulation.
See “Debugging Conflicting Transi tions” on page 19-24 for a complete
description and example.

• Data Range — Check whether the minimum and maximum values you
specified for a data in its properties dialog are exceeded. Also check
whether fixed-point data overflows its base word size. See “Debugging Data
Range Violations” on page 19-26 for a complete description and example.

19-11



19 Debugging and Testing

• Detect Cycles — Check whether a step or sequ ence of steps indefinitely
repeats itself. See “Debugging Cyclic Behavior” on page 19-28 for a
complete description and example.

To include the supporting code designated for these debugging options in the
simulation application, select the Enable debugging/animation check box
in the Simulation Target dialog. This option is described in “Configuring the
Simulation Target for the Main Model” on page 18-15.

Note You must rebuild the target for any changes to any of the settings
referenced above to take effect.

Starting Simulation in the Debugging Window
To debug the Stateflow charts in a mo del, you start simulation in the
Debugging window with these steps:

1 Select the Start button.

A debugging simulation session starts. When a breakpoint that you set
is encountered, the Stateflow Debugging window takes on the following
appearance:
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At the brea kpoint, the following status ite ms appear in the upper portion of
the Debugger window:

• Stopped — Displays the step executed just prior to breaking execution.

• Executing — Displays the currently executing Stateflow chart.

• Current Event — Displays the event being processed by the Stateflow
chart.

• Simulink Time — Displays the current simulation time.

• Code Coverage — Displays the percentage of code covered in this
simulatio n.

During si mulation, the Stateflow chart is ma rked read-only. The appearance
of the Sta teflow Editor toolbar and menus changes so that object creation
is not possible. When the Stateflow Editor is in this read-only mode, its
conditio n is referred to as iced.
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Controlling the Execution Rate in the Debugging
Window
Once you start si mulation as described in “St arting Simulation in the
Debugging Windo w” on page 19-12, and a breakpoint is reached, you can
control the rat e of execution of Stateflow charts to execute step-by-step or
continuously u ntil another breakpoint is reached. Use the following buttons
in the Statefl ow Debugging window to control the rate of execution:

• Continue — Aft er simulation has been started, and a breakpoint has been
encountered, the Start button is marked Continue. Press Continue to
continue simu lation.

• Step — Execute the next execution step, and suspend the simulation.

• Break — Suspend the simulation and transfe r control to the Debugging
window.

• Stop Simulation — Stop simulation altogether and relinquish debugging
control. Whe n simulation stops, the Stateflow Editor toolbar and menus
return to the ir normal appearance and operation so that object creation
is again possible.

Setting the Output Display Pane
During simul ation, the Debugging window monitors a variety of execution
indicators in its output display in the bottom pane of the Debugging window.
You select t he contents of this display with the following pull-downs located
just above t he display, which are enabled only after a breakpoint is reached
during sim ulation.

• Breakpoints — Display a list of the set breakpoints. You can set
breakpoin ts in the Debugger and in the pro perties dialogs of individual
objects such as states, transitions, and fun ctions. See “Setting Breakpoints
for Debug ging” on page 19-7 for details. Th is option lists breakpoints for
the curre ntly executing chart or for all charts in the model.

• Browse Data — Display the current values of defined data objects. This
pull-dow n list lets you filter displayed data between all data and watched
data. Wat ched data has the Data property Watch in Debugger enabled
for it. E ach of these categories is further f iltered by data for the currently
executi ng chart, or all charts in the model. For more details see “Watching
Data in t he Stateflow ® Debugger” on page 19-32.
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• Active States — Display a list of active states in the display area.
Double-clicking any state causes the Stateflow Editor to display that state.
This pull-down lets you display activ e states in the current chart, or active
states for all charts in the model.

• Call Stack — Display a sequential list of the Stopped and Current Event
status items that occur with each single-step through the simulation.

Once you make a selection, the pull-do wn menu corresponding to the current
display is highlighted. Once you select an output display button, that type of
output is displayed until you choose a different display type. You can clear
the display by selecting Clear Display from the File menu of the Stateflow
Debugging window.
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Debugging Run-Time Errors Example

In this section...

“Creating the Model and the Stateflow ® Chart” on page 19-16

“Debugging the Stateflow ® Chart” on page 19-18

“Correcting the Run-Time Error” on page 19-19

“Identifying Stateflow ® Objects in Error Messages” on page 19-20

Creating the Model and the Stateflow ® Chart
In this topic, you create a model with a Stateflow ® chart to debug. Follow
these steps:

1 Create the following Simulink ® model and Stateflow chart:
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2 From the Stateflow Editor, add an event Switch with a scope of Input
from Simulink and a Rising Edge trigger.

3 Also add a data Shift with a scope of Input from Simulink.

The Stateflow chart has two states at the highest level in the hierarchy,
Power_off and Power_on . By default, Power_off is active. The event Switch
toggles the system between the Power_off and Power_on states. Power_on
has three substates: First , Second , and Third . By default, when Power_on
becomes active, First also becomes active. When Shift equals 1, the system
transitions from First to Second , Second to Third , Third to First , for each
occurrence of the event Switch , and then the pattern repeats.
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In the Simulink model, there is an even t input and a data input. A Sine Wave
block generates a repeating input eve nt that corresponds with the Stateflow
event Switch . The Step block generates a rep eating pattern of 1 and 0 that
corresponds with the S tateflow data object Shift . Ideally, the Switch event
occurs at a frequency that allows at least one cycle through First , Second ,
and Third .

Debugging the Stateflow ® Chart
You create an example model with a Stateflow chart that needs debugging in
“Creating the Model and the Stateflow ® Chart” on page 19-16. To debug the
Stateflow chart, follow these steps:

1 In the Stateflow Editor, select Tools > Open Simulation Target .

The Simulation Target dialog appears.

2 Make sure that Enable debugging/animation is selected.

3 Select Close in the Simulation Target dialog to close it and apply the
changes.

4 In the Stateflow Editor, select Tools > Debug.

The Stateflow Debugging window opens.

5 Select the Chart entry option under the Break Controls border.

6 Under Animation, select Enabled to enable animation o f Stateflow charts
during simulation.

7 In the Stateflow Debugg ing window, select the Start button to start the
simulation.

Informational messages appear in the MATLAB ® Command Window. The
Stateflow Editor toolbar and menus change appearance to indicate a
read-only interface. The Stateflow chart is parsed, the code is generated,
and the target is built.

Because you specified a breakpoint on chart entry, the execution stops at
that point and the Debugger display status indicates the following:
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Stopped: Just after entering during function
of Chart debug__power

Executing: sf_debug_ex_debug_power
Current Event: Input event Switch

8 Select the Step button.

The Step button executes the next execution step and stops.

9 Continue selecting the Step button and watching the animating Stateflow
chart.

After each step, watch the Stateflow chart animation and the Debugger
status area to see the sequence of execution.

Single-stepping shows that the Statefl ow chart does not exhibit the desired
behavior. The transitions from the First to the Second to the Third state
inside the state Power_on are not occurring because the transition from
Power_on to Power_off takes priority. The output display of code coverage
also confirms this observation.

Correcting the Run-Time Error
In “Debugging the Stateflow ® Chart” on page 19-18, you step through a
simulation of an example Stateflow chart and find an error: the generation of
the event Switch is driving the simulation and the simulation time is passing
too quickly for the input data object Shift to have an effect.

Correct this error as follows:

1 Choose Stop from the Simulation menu of the Stateflow Editor.

The Stateflow Editor is now writable. The model might need to be
completely rethought.

2 Add the condition [t > 10.0] to the transition from Power_on to
Power_off as shown.
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Now the transition from Power_on to Power_off is not taken until
simulation time is greater than 10.0.

3 In the State flow Debugging window, select Start to begin simulation again.

4 Select Step repeatedly to observe the new behavior.

Identifying Stateflow ® Objects in Error Messages
When an error message appears during simulation, it refers to the relevant
Stateflow object using its name and ID number. Here is an example of an
error message:

Unresolved event 'Switch' in transition Switch (#100)

The ID number of a Stateflow object is unique, but not its name. To identify
an object using its ID number, do one of the following:

• Use these Stateflow API commands at the MATLAB prompt:

>> theObject = find(sfroot, 'Id', <id number>);
>> theObject.view

The first command finds the Stateflow object corresponding to the <id
number> that you specify. The second command highlights the chosen
object in the Stateflow Editor. (See t he Stateflow API documentation for
information about the find and view methods.)
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• Right-click on an element in the chart and select Send to Workspace
from the context menu.

The properties of the chosen object appear in the MATLAB Command
Window. The ID number of the object is the second property listed.
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Debugging State In consistencies

In this section...

“Definition of State Inco nsistency” on page 19-22

“Causes of State Inconsistency” on page 19-22

“Detecting State Inconsistency” on page 19-22

“State Inconsistency Example” on page 19-23

Definition of State Inconsistency
States in a Stateflow ® chart are inconsistent if they violate any of the
following rules:

• An active state (consisting of at leas t one substate) with exclusive (OR)
decomposition has exactly one active substate.

• All substates of an active state with parallel (AND) decomposition are
active.

• All substates of an inactive state with either exclusive (OR) or parallel
(AND) decomposition are inactive.

Causes of State Inconsistency
State inconsistency errors are mos t commonly caused by the omission
of a default transition to a substate i n superstates with exclusive (OR)
decomposition.

Design errors in complex Stateflow charts can also result in state inconsistency
errors. You can detect these erro rs using the Debugger at runtime.

Detecting State Inconsistency
To detect the state inconsis tency during a simulation,

1 Build the target with debugging enabled.

2 Invoke the Debugger and enable State Inconsistency checking.

19-22



Debugging State Inconsistencies

3 Start the simulation.

State Inconsistency Example
This Stateflow chart has a state inconsistency.

In the absence of a default transition in dicating which substate is to become
active, the simulation encounters a run-time state inconsistency error.

Adding a default transition to one o f the substates resolves the state
inconsistency.
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Debugging Conflicting Transitions

In this section...

“What Are Conflicting Transitions?” on page 19-24

“Detecting Conflicting T ransitions” on page 19-24

“Conflicting Transition Example” on page 19-24

What Are Conflicting Transitions?
Conflicting transitions are two equally valid paths from the same source in a
Stateflow ® chart during execution. In the case of a conflict, Stateflow software
evaluates equivalent transitions based on their geometry, as described in
“Transition Testing Order” on page 3-22.

Detecting Conflicting Transitions
To detect conflicting transitions during a simulation, do the following:

1 Build the target with debugging enabled.

2 Invoke the Debugger and enable Transition Conflict checking.

3 Start the simulation.

Conflicting Transition Example
This Stateflow chart has a conflicting transition.
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The default transition to state A assigns data a equal to 1 and data b
equal to 10. State A’s during action increments a and decrements b. The
transitio n from state A to state B is valid if the condition [a > 4] is true. The
transitio n from state A to state C is valid if the condition [b < 7] is true. As
the simula tion proceeds, there is a point where state A is active and both
conditio ns are true. This is a transition conflict.

Multiple outgoing transitions from states tha t are of equivalent label priority
are evalu ated in a clockwise progression starting from the twelve o’clock
position on the state. In this example, the transition from state A to state B
is taken .

Althoug h the geometry is used to continue after the transition conflict, it is
not recommended that you design your Stateflow chart based on an expected
executi on order.
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Debugging Data Range Violations

In this section...

“Types of Data Range Vio lations” on page 19-26

“Detecting Data Range Vio lations” on page 19-26

“Data Range Violation Example” on page 19-26

Types of Data Range Violations
Stateflow ® software detects the following data range violations during
simulation:

• If a data object equals a value outside the range of the values set in the
Initial, Minimum, and Maximum fields specified in the data properties
dialog

See “Setting Data Properties in the Data Dialog” on page 7-7 for a
description of the Initial, Minimum, and Maximum fields in the data
properties dialog.

• If the fixed-point result of a fixed-p oint operation overflows its bit size

See “Overflow Detection for Fixed-Point Types” on page 11-10 for a
description of the overflow cond ition in fixed-point numbers.

Detecting Data Range Violations
To detect data range violations during a simulation:

1 Build the target with debugging enabled.

2 Open the Debugger window.

3 In the Error checking options of the Debugger, select Data Range.

4 Start the simulation.

Data Range Violation Example
This Stateflow chart has a data range violation.
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The data a is defined to have an Initial and Minimum value of 0 and a
Maximum value of 2. Each time an event awakens this Stateflow chart and
state A is active, a increments. The value of a quickly becomes a data range
violation.
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Debugging Cyclic Behavior

In this section...

“What Is Cyclic Behavior?” on page 19-28

“Detecting Cyclic Behavior During Simulation” on page 19-28

“Cyclic Behavior Example” on page 19-28

“Flow Cyclic Behavior Not Detected Example” on page 19-29

“Noncyclic Behavior Flagged as a Cyclic Example” on page 19-30

What Is Cyclic Behavior?
Cyclic behavior is a step or sequence o f steps that is repeated indefinitely
(recursive). The Stateflow ® Debugger uses cycle detection algorithms to detect
a class of infinite recursions caused by event broadcasts.

Detecting Cyclic Behavior During Simulation
To detect cyclic behavior during a simulation, do the following:

1 Build the target with debugging enabled.

2 Invoke the Debugger and enable Detect Cycles.

3 Start the simu lation.

Cyclic Behavi or Example
This Stateflo w chart shows a typical example of a cycle created by infinite
recursions caused by an event broadcast.
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When the state C during action executes, event E1 is broadcast. The transition
from state A.A1 to state A.A2 becomes valid when event E1 is broadcast. Event
E2 is broadcast as a condition action of t hat transition. The transition from
state B.B1 to state B.B2 becomes valid when event E2 is broadcast. Event E1
is broadcast as a condition action of the transition from state B.B1 to state
B.B2 . Because these event broadcasts of E1 and E2 are in condition actions, a
recursive event broadcast situation o ccurs. Neither transition can complete.

Flow Cyclic Behavior Not Detected Example
This Stateflow chart shows an example of cyclic behavior in a flow graph
that is not detected by the Debugger.
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The data object i is set to 0 in the condition acti on of the default transition. i
is incremented in the next transition seg ment condition action. The transition
to the third connective junction is valid only when the condition [i < 0] is
true. This condition will never be true in this flow graph and there is a cycle.

This cycle is not detected by the Debugger because it does not involve event
broadcast recursion. Detecting cycl es that depend on data values is not
currently supported.

Noncyclic Behavior Flagged as a Cyclic Example
This Stateflow chart shows an example of noncyclic behavior that the
Debugger flags as being cyclic.
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State A becomes active and i is initialized to 0. When the transition is tested,
the condition [i < 5] is true. The condition actions that increment i and
broadcast the event E are executed. The broadcast of E when state A is active
causes a repetitive testing (and incrementing of i ) until the condition is no
longer true. The Debugger flags this as a cycle when in reality, the apparent
cycle is broken when i becomes greater than 5.
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Watching Data Values with Debuggers

In this section...

“Watching Data in the Stateflow ® Debugger” on page 19-32

“Watching Stateflow ® Data in the MATLAB ® Command Window” on page
19-33

Watching Data in the Stateflow ® Debugger
The Browse Data pull-down menu in the Stateflow ® Debugger lets you
display selected data in the bottom o utput display pane of the Stateflow
Debugger during simulation, after a b reakpoint is reached. The Debugger
can filter the display between:

• Watched data and all data

• Watched data in the currently execut ing chart and watched data for all
charts in a model

Note You designate Stateflow data to be watched data by enabling the
property “Watch in Stateflow ® Debugger” on page 7-24, as described in
“Properties You Can Set in the Val ue Attributes Pane” on page 7-21.

The following example displays All Data (All Charts) for two executing
charts, Chart1 and Chart2 , in a simulating model. Each chart has its own
data value: x1 and x2 , respectively.
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The data for each chart is headed by its owning object. Each displayed object
(chart, state, data, and so on) is accompanied by a unique identifier in the
form (#id(xx:yy:zz)), which is used in linking the listed object to its appearance
in the Stateflow chart.

Note Fixed-point data appears with two values: the quantized integer
value (stored integer) and the scaled real-world (actual) value. For more
information, see “Using Fixed-Point Data in Stateflow ® Charts” on page 11-5.

Watching Stateflow ® Data in the MATLAB ® Command
Window
When simulation reaches a breakpoint , you can view the values of Stateflow
data in the MATLAB ® Command Window. In the following example, a default

19-33



19 Debugging and Testing

transition calls an Embedded MATL AB™ function with a breakpoint set at
the last executable line of the function:
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When simulation reaches the breakpoi nt, you can display Stateflow data
in the MATLAB Command Window. Assuming you want to watch the data
variable vals from the previous example, follow these steps:

1 At the MATLAB prompt, press Enter.

A debug>> prompt appears.

2 Enter the MATLAB command whos to view the data that is visible at the
current scope.

debug>> whos
Name Size Bytes Class

vals 4x1 32 double array
len 1x1 8 double array
stdev 1x1 8 double array
mean 1x1 8 double array
invals 4x1 32 double array

Grand total is 5 data in scope

debug>>

3 Enter the name of data array vals at the prompt to display its value.

debug>> vals

vals =

2
3
4
5

debug>>

4 Enter vals(2:3) to view the values of a submatrix of the array.

debug>> vals (2:3)
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ans =

3
4

debug>>

The Command Line Debugger provides these commands during simulation:

Command Description

dbstep Advance to next executable line of code.

dbstep
[in/out]

When debugging Embedded MATLAB functions:

• dbstep [in] advances to the next executable line of
code. If that line contains a call to another function,
execution continues to the first executable line of the
function.

• dbstep [out] executes the rest of the function and
stops just after leaving the function.

dbcont Continue execution to next breakpoint.

dbquit
(ctrl-c)

Stop simulation of the model. Press Enter after this
command to return to the command prompt.

help Display help for command-line debugging.

print var

...or...

var

Display the value of the variable var.

var (i) Display the value of the ith element of the vector or matrix
var.

var (i:j) Display the value of a submatrix of the vector or matrix
var.
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Command Description

save Saves all variables to the specified file. Follows the syntax
of the MATLAB save command. To retrieve variables in
the MATLAB base workspace, use the load command
after simulation has ended.

whos Display the size and class (type) of all variables in the
scope of the halted Embedded MATLAB function.

You can issue any other MATLAB command at the debug>> prompt but the
results are executed in the Stateflow workspace. For example, you can issue
the MATLAB command plot (var) to plot the values of the variable var.

To issue a command in the MATLAB base workspace at the debug>> prompt,
use the evalin command with the first argument 'base' followed by the
second argument command string, for example, evalin('base','whos') .

Note To return to the MATLAB base workspace, use the dbquit command.
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Monitoring Test Points in Stateflow ® Charts

In this section...

“About Test Points in Stateflow ® Charts” on page 19-38

“Setting Test Points for Stateflow ® States and Local Data with the Model
Explorer” on page 19-39

“Logging Data Values and State Activity” on page 19-41

“Logging Data Values Using the Command Line API” on page 19-46

“Using a Floating Scope to Monitor Data Values and State Activity” on
page 19-48

About Test Points in Stateflow ® Charts
A Stateflow ® test point is a signal that you can observe during simulation —
for example, by using a Floating Scope block. You can designate the following
Stateflow objects as test points:

• Any state

• Local data with the following characteristics:

- Can be scalar, one-dimensional, or two-dimensional in size

- Can be any data type except ml

- Must be a descendant of a Stateflow chart

You implicitly declare all states and lo cal data as test points by selecting the
Enable debugging/animation code option for the Stateflow simulation
target. If you do not select this option, you can specify individual local data or
states as test points by setting their TestPoint property in the Stateflow API
or through the Model Explorer (see “ Setting Test Points for Stateflow ® States
and Local Data with the Model Explorer” on page 19-39).

You can monitor individual Statefl ow test points with a floating scope
during model simulation. You can also log test point values into MATLAB ®

workspace objects.
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Setting Test Points for Stateflow ® States and Local
Data with the Model Explorer
You can explicitly set individual states or local data as test points through
the Model Explorer. Use the example yo u create in the following procedure to
learn how to set individual test points for Stateflow states and data.

1 Create this model.

The model consists of a single State flow block named Chart1, which is
triggered by a signal from a Sine Wave block through the input trigger
event tic . In the Stateflow chart, the state A and its substate X are entered
for the first tic event. State A and substate X stay active until 10 tic
events have occurred, and then state B is entered. On the next event, state
A and substate X are entered and the cycle continues.

The data x is added to the state X. The entry and during actions for
substate X increment x while X is active for 10 tic events. When state B is
entered, x reinitializes to zero, and the cycle repeats.

2 Save the model as myModel.mdl .
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3 Start the Model Explorer. In the Simulink ® model, select View > Model
Explorer.

The Model Explorer appears.

4 In the Model Explorer, expand myModel .

5 Expand Chart1 , then select A.

6 In the rightmost pane, State A, select the Test point check box. Click
Apply.

This action creates a test point for the state A.

Alternatively, you can access a test point through the middle pane. By
default, the Model Explorer displays event and data child objects in the
Contents pane for the selected object in the Model Hierarchy pane.
You can set the test point for the state A through this pane by selecting
the parent of A. If the states do not appear in the middle pane, select
the States/Functions/Boxes/Etc. check box in the View > List View
Options for All Stateflow Objects.
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7 Repeat step 6 for state X. Click Apply.

8 Select X again. Select the local data x in the Contents pane.

9 In the rightmost pane for that data, select the Value Attributes tab and
then select the Test point check box. Click Apply.

10 Repeat step 6 for state B. Click Apply and save the model.

You can now log these test points. See “Logging Data Values and State
Activity” on page 19-41 for instruction s on using the Signal Logging dialog.
See “Logging Data Values Using the Command Line API” on page 19-46 for
instructions on logging signals at the MATLAB command line.

Logging Data Values and State Activity
During simulation, you can log values for data and state activity into Simulink
objects. After simulation, you can access these objects in the MATLAB
workspace and use them to report and plot the values.

You can use the following procedure to learn how to access logged Stateflow
data and state activity. Thi s procedure uses the model, myModel , from the
preceding topic, “Setting Test Points for Stateflow ® States and Local Data
with the Model Explorer” on page 19-39.

1 If myModel is not already open, at the MATLAB prompt, type

>> myModel

The model appears.
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2 In the Simulink model window, right-c lick the Stateflow block and select
Log Chart Signals.

The Signal Logging dialog appears, as shown.

3 Select the check box next to A.

This box is the state activity signal for state A. When A is active, its value is
1. When A is inactive, its value is 0.

After checking A, notice these properties in the right pane of the Signal
Logging dialog:

Signal Properties Description

Signal Name Name of the highlighted state or data.

Log signal data Checking this selects the highlighted signal in
the Signals pane.
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Signal Properties Description

Logging name Name of the signal logged. By default, this is
set to the name of the selected/highlighted state
or data. You can select Custom for this property
to rename the selected/hi ghlighted signal in the
adjacent field to the right.

Limit data points to
last

Select this property to enter the number of most
recent sample values to log in the adjacent field
to the right for the selected/highlighted signal.

Decimation Select this property to enter the level of
decimation for the signal values logged for the
selected/highlighted signal.

4 Select all the signals in the Signal pane and click OK to close the Signal
Logging dialog.

5 Simulate the model.

During simulation, the Simulink model data log object logsout is
generated in the MATLAB workspace.

6 After simulation, enter this string at the MATLAB prompt:

>> logsout

You see this result:

logsout =

Simulink.ModelDataLogs (myModel):
Name Elements Simulink Class

Chart1 4 StateflowDataLogs

The display identifies logsout as a Simulink object of type ModelDataLogs .
This type is the highest leve l logging object. The object Chart1 appears as
the only contents of logsout and represents logged data for the Stateflow
block. Chart1 is identified as a Simulink object of type StateflowDataLogs .
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7 At the MATLAB prompt, enter this string:

>> logsout.Chart1

You see this result:

ans =

Simulink.StateflowDataLogs (Chart1):
Name Elements Simulink Class

('A.X.x') 1 Timeseries
A 1 Timeseries
('A.X') 1 Timeseries
B 1 Timeseries

The signals that you selected in the Signal Logging dialog appear as
Simulink objects of type Timeseries . Notice that the signals for the activity
of state X and the value of data x appear as ('A.X') and ('A.X.x') ,
respectively. Because of the way that logged signals are stored, you must
use dot notation to access logged data for Stateflow objects below chart
level in the Stateflow chart.

8 At the MATLAB prompt, enter this string:

>> logsout.Chart1.('A.X.x')

You see this result:

ans =

Name: 'A.X.x'
BlockName: 'StateflowChart/A.X.x'
PortIndex: 1

SignalName: 'A.X.x'
ParentName: 'A.X.x'

TimeInfo: [1x1 Simulink.TimeInfo]
Time: [114x1 double]
Data: [114x1 double]
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The logging object for the data x, ('A.X.x') , is actually a structure of
logged data pertinent to x. The actual logged signal values for x are
contained in the Data object, a vector of 114 values. For example, if you
were to enter the MATLAB command logsout.Chart1.('A.X.x').Data , a
long stream of data would appear. A better way to see the logged values of
x is to use the plot method shown in the next step.

9 At the MATLAB prompt, plot the values of x with this command:

>> logsout.Chart1.('A.X.x').plot

You see this result:

The preceding plot exhibits the e xpected results for the value of x. It
increments for 10 time steps before resetting to 0 when states X and A are
exited and state B is entered in the Stateflow chart.

The preceding example sho ws some capabilities you h ave for reporting logged
Stateflow data. Stateflow data conforms to the general rules for handling
logging signals in Simulink models.
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Logging Data Val ues Using the Command Line API
You can also specify which signals to log by using API commands at the
MATLAB prompt. T he following procedure uses the model, myModel , from the
previous topic “ Setting Test Points for Stateflow ® States and Local Data with
the Model Explo rer” on page 19-39.

1 If myModel is not already open, at the MATLAB prompt, type:

>> myModel

The model appears.

2 To define a Simulink object of type SigPropNode for the Stateflow chart,
use this command:

>> signal_properties = ...
get_param('myModel/Chart1','AvailSigsInstanceProps')

You see this result:

signal_properties =

Simulink.SigPropNode

3 To retrieve the contents of this object, use the API method get :

>> signal_properties.get

You see this result:

Path: 'StateflowChart'
Name: 'Chart1@StateflowChart'
Type: 'Stateflow'

Signals: [4x1 Simulink.SigProp]

You can log four signals in the chart.

4 To view the properties of the first signal, type:

>> signal_properties.Signals(1).get

This list appears:

19-46



Monitoring Test Points in Stateflow® Charts

SigName: 'A.X.x'
BlockPath: 'StateflowChart/A.X.x'
PortIndex: 1
LogSignal: 0

UseCustomName: 0
LogName: 'A.X.x'

LimitDataPoints: 0
MaxPoints: 5000

Decimate: 0
Decimation: 2

LogFramesIndv: 0
Children: [0x1 double]

By default, LogName is identical to SigName. If you want to use another
name for the logged signal, instead of SigName itself, change LogName to a
different string:

>> signal_properties.Signals(1).LogName = 'new_name';

Then enable the custom string for this signal:

>> signal_properties.Signals(1).UseCustomName = 1;

5 The value of LogSignal is 0 if the signal is not logged, and it equals 1 if the
signal is logged. In this case, the signal is not logged.

To enable logging of the signal A.X.x , change the value of LogSignal :

>> signal_properties.Signals(1).LogSignal = 1;

6 Reset the chart parameters using the updated signal_properties object:

>> set_param('myModel/Chart1','AvailSigsInstanceProps', ...
signal_properties)

In the Simulink model window, right-click the Stateflow block and select Log
Chart Signals. In the Signal Logging dialog, you see that the box next to the
signal A.X.x is now checked. Also, the custom string new_name appears in the
Logging name field for that signal.
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For more information on how you can use and manipulate logged data with
MATLAB commands and scripts, see “Logging Signals” in the Simulink
software documentation.

Using a Floating Scope to Monitor Data Values and
State Activity
In the steps of this topic, you configu re a Floating Scope block to monitor a
data value and the activity of a state in this example model:

The model consists of a Floating Scope block and a Stateflow block. The chart
for the S tateflow block starts by adding an increment of 0.02 for 10 samples
to the d ata x1 . For the next 10 samples, x1 increments by 0.2, and the cycle
repeats.

1 Double-click the Floating Scope block.

A Floating Scope window appears, already scaled for this example.
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2 In the Floating Scope window, select the Signal Selection tool .

The Signal Selector dialog appears with a hierarchy of Simulink blocks
for the model.

3 In the Model hierarchy pane, select the Stateflow block whose signals
you want to monitor and, in the List contents pane, select the data you
want to monitor.
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In the preceding example, the blo ck named Chart is selected in the Model
hierarchy pane, and the data x1 and the activity of state A are selected in
the Contents pane.

4 Simulate t he model.

When you simulate the example model, you receive a signal trace for x1
and for the activity of state A, as shown.
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When state A is active, its activity signal value is 1, and when it is inactive,
its signal value is 0. Because this val ue is very low or very high compared
to some data, you might want to put it in a second Floating Scope block to
compare it with other data.
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Understanding Model Coverage for Stateflow ® Charts

In this section...

“About Model Coverage” on page 19-52

“Making Model Coverage Reports” on page 19-53

“Specifying Coverage Report Settings” on page 19-53

“Cyclomatic Complexity” on page 19-53

“Decision Coverage” on page 19-54

“Condition Coverage” on page 19-58

“MCDC Coverage” on page 19-59

“Coverage Reports for Stateflow ® Charts” on page 19-59

“Colored Stateflow ® Chart Coverage Display” on page 19-67

About Model Coverage
Model coverage is a measure of how thoroughly a model is tested. The Model
Coverage tool helps you to validate your model tests by measuring model
coverage for your tests. It determines the extent to which a model test case
exercises simulation control flow paths through a model. The percentage of
paths that a test case exercises is called its model coverage.

You can also use model coverage for:

• Truth tables (see “Model Coverage for Truth Tables” on page 16-57)

• Embedded MATLAB™ functions (see “Model Coverage for an Embedded
MATLAB™ Function” on page 17-22)

Note The Model Coverage tool requires a license for Simulink ® Verification
and Validation™ software.
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Making Model Cov erage Reports
Model Coverage r eports are generated during si mulation if you specify them
(see “Specifying Coverage Report Settings” on page 19-53). For Stateflow ®

charts, the Mode l Coverage tool records the execution of the chart itself and
the execution o f its states, transition decisions, and the individual conditions
that compose each decision. When simulation is finished, the Model Coverage
report tells yo u how thoroughly a model has been tested, in terms of how
many times eac h exclusive substate is entere d, executed, and exited based
on the history of the superstate, how many tim es each transition decision
has been evaluated as true or false, and how many times each condition
(predicate) has been evaluated as true or false.

Specifying C overage Report Settings
To specify coverage report settings, select Tools > Coverage Settings in
a Simulink ® model window.

By selectin g the Generate HTML Report option in the Coverage Settings
dialog, you can create an HTML report contain ing the coverage data generated
during simu lation of the model. The report appears in the MATLAB ® Help
browser at t he end of simulation.

By selectin g the Generate HTML Report option, you also enable the
selection of different coverages that you can specify for your reports. The
following sections address only coverage metrics that affect reports for
Stateflow charts. These metrics include decisi on coverage, condition coverage,
and MCDC c overage. For a complete discussion of all dialog fields and
entries, see “Specifying Model Coverage Reporting Options” in the Simulink
Verifica tion and Validation documentation.

Cycloma tic Complexity
Cyclomat ic complexity is a measure of the c omplexity of a software module
based on its edges, nodes, and components within a control-flow graph. It
provide s an indication of how many times you need to test the module.

The calculation of cyclomatic complexity is as follows:

CC = E - N + p
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where CCis the cyclomatic complexity, E is the number of edges, N is the
number of nodes, and p is the number of components.

Within the Model Coverage tool, each decision is exactly equivalent to a
single control flow node, and each decis ion outcome is equivalent to a control
flow edge. Any additional structure in the control-flow graph is ignored
since it contributes the same number of nodes as edges and therefore has no
effect on the complexity calculation. This allows cyclomatic complexity to be
reexpressed as follows:

CC = OUTCOMES - DECISIONS + p

For analysis purposes, each chart is considered to be a single component.

Decision Coverage
Decision coverage interprets a mod el execution in terms of underlying
decisions where behavior or execution must take one outcome from a set of
mutually exclusive outcomes.

Note Full coverage for an object of decision means that every decision has
had at least one occurrence of each of its possible outcomes.

Decisions belong to an object making the decision based on its contents or
properties. The following table lists the decisions recorded for model coverage
for the Stateflow objects owning them. The sections that follow the table
describe these decisions and their possible outcomes.

Object Possible Decisions

Chart If a chart is a triggered Simulink block, it must decide
whether or not to execute its bl ock. See “Chart as a Triggered
Simulink ® Block Decision” on page 19-55.

If a chart contains exclusive (OR) substates, it must decide
which of its states to execute. See “Chart Containing
Exclusive OR Substates Decision” on page 19-55.
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Object Possible Decisions

State If a state is a superstate contain ing exclusive (OR) substates,
it must decide which substate to execute. See “Superstate
Containing Exclusive OR Substates Decision” on page 19-55.

If a state has on event name actions (which might include
temporal logic operators), th e state must decide whether or
not to execute the actions. See “State with On Event_Name
Action Statement Decision” on page 19-58.

Transition If a transition is a conditional transition, it must decide
whether or not to exit its active source state or junction and
enter another state or junction. See “Conditional Transition
Decision” on page 19-58.

Chart as a Triggered Simulink ® Block Decision
If the chart is a triggered block in a Si mulink model, the decision to execute
the block is tested. If the block is not triggered, there is no decision to execute
the block, and the measurement of deci sion coverage is not applicable (NA).

See “Chart as Subsystem Details Report Section” on page 19-61.

Chart Containing Exclusive OR Substates Decision
If the chart contains exclusive (OR) substates, the decision on which substate
to execute is tested. If the chart contains only parallel AND substates, this
coverage measurement i s not applicable (NA).

See “Chart as Superstate Detai ls Report Section” on page 19-61.

Superstate Containing Exclusive OR Substates Decision
Since a chart is hierarchically proce ssed from the top down, procedures such
as exclusive (OR) substate entry, exit, and execution are sometimes decided
by the parenting superstate.

Note Decision coverage for superstates applies to exclusive (OR) substates
only. A superstate makes no decisions for its parallel (AND) substates.
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Since a superstate must decide which of its exclusive (OR) substates to process,
the number of decision outcomes for th e superstate is equal to the number
of exclusive (OR) substates that it contains. In the examples following, the
choice of which substate to process is made in one of three possible contexts.

Note Implicit transitions are shown as das hed lines in the following examples.

1 Active Call

In the following example, states A and A1 are active.

This gives rise to the following superstate/substate decisions:

• The parent of states A and B must decide which of these states to process.
This decision belongs to the parent. Since A is active, it is processed.

• State A, the parent of states A1 and A2, must decide which of these states to
process. This decision belongs to state A. Since A1 is active, it is processed.

During processing of state A1, all its outgoing transitions are tested. This
decision belongs to the transition and n ot to its parent state A. In this case,
the transition marked by condition C2 is tested and a decision is made
whether to take the transition to A2 or not. See “Conditional Transition
Decision” on page 19-58.
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1 Implicit Substate Exit Context

In the following example, a transition takes place whose source is
superstate A and whose destination is state B. If the superstate has two
exclusive (OR) substates, it is the decision of superstate A as to which
of these substates will perform the im plicit transition from substate to
superstate.

2 Substate Entry with a History Junction

A history j unction, similar to the one shown in the example following,
provides a superstate with the means of recording which of its substates
was last a ctive before the superstate was exited. If that superstate now
becomes the destination of one or more tran sitions, the history junction
provides it the means of deciding which previ ously active substate to enter.
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See “State Details Report Section” on page 19-62.

State with On Event_Name Action Statement Decision
A state that has an on event_name action statement must decide whether to
execute that statement based on the reception of a specified event or on an
accumulation of the specified event w hen using temporal logic operators.

See “State Labels” on page 2-8 and “Using Temporal Logic in State Actions
and Transitions” on page 9-57.

Conditional Transition Decision
A conditional transition is a transition with a triggering event and/or a
guarding condition (see “Transition Label Notation” on page 2-14). In a
conditional transition from one state to another, the decision to exit one state
and enter another is credited to the transition itself.

See “Transition Details Report Section” on page 19-64.

Note Only conditional transitions receiv e decision coverage. Transitions
without decisions are not applicable to decision coverage.

Condition Coverage
Condition coverage reports on the extent to which all possible outcomes are
achieved for individual subconditions composing a transition decision.

Note Full condition coverage means that all possible outcomes occurred for
each subcondition in the test of a decision.

For example, for the decision [A & B & C] on a transition, condition coverage
reports on the true and false occurrenc es of each of the subconditions A, B,
and C. This results in six possible outcomes: true and false for each of three
subconditions.

See “Transition Details Report Section” on page 19-64.

19-58



Understanding Model Coverage for Stateflow® Charts

MCDC Coverage
The Modified Cond ition Decision Coverage (MCDC) option reports a test’s
coverage of occurrences in which changing an individual subcondition within
a transition res ults in changing the entire transition trigger expression from
true to false or f alse to true.

Note If matchin g true and false outcomes occur for each subcondition,
coverage is 100%.

For example, if a transition executes on the condition [C1 & C2 & C3 | C4
& C5], the MCDC r eport for that transition sh ows actual occurrences for
each of the fiv e subconditions (C1, C2, C3, C4, C5) in which changing its
result from tr ue to false is able to change the result of the entire condition
from true to fa lse.

See “Transiti on Details Report Section” on page 19-64.

Coverage Rep orts for Stateflow ® Charts
The following sections of a Model Coverage report were generated by
simulating t he sf_boiler demo model, which includes the Stateflow Chart
block Bang-B ang Controller. The coverage metrics for Decision Coverage,
Condition Coverage, and MCDC Coverage are enabled for this report.
The Look-up Table Coverage and Signal Range Coverage metrics
are dependent on the Simulink model and not relevant to the coverage of
Stateflow c harts.

These subtopics follow:

• “Summary R eport Section” on page 19-60

• “Chart as S ubsystem Details Report Section” on page 19-61

• “Chart as Su perstate Details Repor t Section” on page 19-61

• “State Deta ils Report Section” on page 19-62

• “Transitio n Details Report Section” on page 19-64
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For information on the model coverage of truth tables, see “Model Coverage
for Truth Tables” on page 16-57.

Summary Report Section

The Summary section shows coverage re sults for the entire test and appears
at the beginning of the Model Coverage report.

Each line in the hierarchy summarizes t he coverage results at its level and
the levels below it. You can click a hyperlink to a later section in the report
with the same assigned hierarchical order number that details that coverage
and the coverage of its children.

The top level, sf_boiler, is the Simulink model itself. The second level,
Bang-Bang Controller, is the Stateflow chart. The next levels are superstates
within the Stateflow chart in order of hierarchical containment. Each
superstate uses an SF: prefix. The bottom level, Boiler Plant model, is an
additional subsystem in the model.
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Chart as Subsystem Details Report Section

The Subsystem report sees the chart as a block in a Simulink model, instead
of a chart with states and transitions. If you click the hyperlink of the
subsystem name in the title, you see a highlighted Bang-Bang Controller
block in the Simulink block diagram.

Chart as Superstate Details Report Section

The Chart report sees a Stateflow char t as the superstate container of its
states and transitions. If you click the hyperlink of the chart name in the title,
you see the chart in the Stateflow Editor.
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Cyclomatic complexity and decision c overage appear for the chart and its
descendants. Condition coverage and MCDC are not applicable (NA) for a
chart, but apply to the descendants.

State Details Report Section

The example state section contains a report on the state On, which appears as
follows:
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On resides in the box Heater , which has its own details report (not shown)
because it contains other Stateflow objects. However, because On is a
superstate containing the two states HIGH and NORMalong with a history
junction and the function warm, On has its own numbered report in the Details
section.

The decision coverage for the On state tests the decision of which substate to
execute. The results indicate that five of six possible outcomes were tested
during simulation. The decisions include:

1 The choice of which substate to execute when On is executed

2 The choice of which state to exit when On is exited

3 The choice of which substate to enter when On is entered and the History
junctio n has a record of the previously active substate

Because each decision above can result in processing either HIGH or NORM,
the tot al possible outcomes are 3 x 2 = 6.

The decision coverage tables display the number of occurrences for each
decision and the number of times each state was chosen. For example, the
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first decision was made 233 times. Of th ese, the HIGH state was executed 150
times and the NORM state was executed 83 times.

Cyclomatic complexity and decision coverage also apply to descendants
of the On state. The decision required by the condition [warm()] for the
transition from HIGH to NORM brings th e total possible decision outcomes to
8. Condition coverage and MCDC are not applicable (NA) for a state.

Note Nodes and edges that make up the cyclomatic complexity calculation
have no direct relationship with model o bjects (states, transitions, etc.).
Instead, this calculation requires a graph representation of the equivalent
control flow.

Transition Details Report Section
Reports for transitions appear under the report sections of their owning
objects. Transitions do not appear in the model hierarchy of the Summary
section, since the hierarchy is based on superstates ownin g other Stateflow
objects.
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The decision for this transition depends on the time delay of 40 seconds and
the condition [cold()] . If, after a 40 second delay, the environment is cold
(cold() = 1 ), the decision to execute this transition and turn the Heater on
is made. For other time intervals or envi ronment conditions, the decision is
made not to execute.

For decision coverage, both true and false outcomes occurred. Because two of
two decision outcomes occurred, coverage was full or 100%.

Condition coverage shows that only 4 o f 6 condition outcomes were tested.
The temporal logic statement after(40,sec) represents two conditions:
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the occurrence of sec and the time delay after(40,sec) . Therefore, three
conditions on the transition exist: sec , after(40,sec) , and cold() . Since
each of these decisions can be true or false, six possible condition outcomes
exist.

The Conditions analyzed table shows each condition as a row with the
recorded number of occurrences for eac h outcome (true or false). Decision
rows in which a possible outcome did not occur are shaded. For example, the
first and the third rows did not record an occurrence of a false outcome.

In the MC/DC report, all sets of occurrences of the transition conditions are
scanned for a particular pair of decisions for each condition in which the
following are true:

• The condition varies from true to false.

• All other conditions contributing to th e decision outcome remain constant.

• The outcome of the decision varies from true to false, or the reverse.

For three conditions related by an imp lied AND operator, these criteria can
be satisfied by the occurrence of these conditions.

Condition Tested True Outcome False Outcome

1 TTT Fxx

2 TTT TFx

3 TTT TTF

Notice that in each line, the condition tested changes from true to false while
the other condition remains constant. I rrelevant contributors are coded with
an "x" (discussed below). If both outcomes occur during testing, coverage is
complete (100%) for the condition tested.

The preceding report example shows co verage only for condition 2. The false
outcomes required for conditions 1 and 3 did not occur, and are indicated
by parentheses for both conditions. T herefore, condition rows 1 and 3 are
shaded. While condition 2 has been tested, conditions 1 and 3 have not and
MCDC is 33%.
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For some decisions, the values of some conditions are irrelevant under certain
circumstances. For example, in the decision [C1 & C2 & C3 | C4 & C5] the
left side of the "|" is false if any one of the conditions C1, C2, or C3 is false.
The same applies to the right side result if either C4 or C5 is false. When
searching for matching pairs that change the outcome of the decision by
changing one condition, holding some of the remaining conditions constant
is irrelevant. In these cases, the MC/ DC report marks these conditions with
an "x" to indicate their irrelevance a s a contributor to the result. These
conditions appear as shown.

Consider the first matched pair. Since condition 1 is true in the True outcome
column, it must be false in the matching False outcome column. This makes
the conditions C2 and C3 irrelevant for the false outcome since C1 & C2 &
C3 is always false if C1 is false. Also, since the false outcome is required to
evaluate to false, the evaluation of C4 & C5 must also be false. In this case, a
match was found with C4 = F, makin g condition C5 irrelevant.

Colored Stateflow ® Chart Coverage Display
The Model Coverage tool displays model c overage results for individual blocks
directly in Simulink diagrams. If you en able this feature, the Model Coverage
tool does the following:

• Highlights (colors) Stateflow objects that have received model coverage
during simulation
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• Provides a context-sensitive display of summary model coverage
information for each object

Caution The coverage tool changes colors only for open Stateflow charts
at the time coverage information is reported. When you interact with the
Stateflow chart, such as selecting a transition or a state, colors revert to
their default values.

For details on enabling and selecting this feature in the Simulink window,
see “Enabling the Colored Diagram Dis play” in the Simulink Verification
and Validation documentation.

Displaying Model Coverage with Model Coloring
Once you enable display coverage with mo del coloring, anytime that the model
generates a model coverage report, indi vidual Stateflow objects receiving
coverage are highlighted with light green or light red.
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Objects highlighted in light green re ceived full coverage during testing.
Objects highlighted in light red receiv ed incomplete coverage. Objects with no
color highlighting rec eive no coverage at all.

Note To revert the Stateflow chart to show o riginal colors, select and deselect
its objects.

Along with the highlighted Stateflow chart, a Coverage Display Window
appears, as shown.
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If you click a highlighted Stateflow object, its summarized coverage appears
in the Coverage Display Window. In the preceding example, the following
summary report appears when you click the MultiFail state:

Summary coverage information appears in the Coverage Display Window
for the Stateflow object, whose hyperlinked name appears at the top of the
window. Click the hyperlink to access th e appropriate section of the coverage
report for this object.

You can set the Coverage Display Window to appear for a block in response to
a hovering mouse cursor instead of a mouse click in one of two ways:

• Select the downward arrow on the ri ght side of the Coverage Display
Window, and, from the resulting menu, select Focus.

• Right-click a colored block and select Coverage display on mouse-over
from the resulting context menu.
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Using the Model Explorer with Stateflow ® Objects

In this section...

“Viewing Stateflow ® Objects in the Model E xplorer” on page 20-2

“Editing States or Charts in th e Model Explorer” on page 20-5

“Adding Data and Events in the Model Explorer” on page 20-6

“Adding a Target in the Model Explorer” on page 20-6

“Renaming Objects in the Model Explorer” on page 20-8

“Setting Properties for Stateflow ® Objects in the Model Explorer” on page
20-9

“Moving and Copying Data, Events, and Targets in the Model Explorer” on
page 20-10

“Changing the Port Order of Input and Output Data and Events” on page
20-11

“Deleting Data, Events, and Targets i n the Model Explorer” on page 20-12

Viewing Stateflow ® Objects in the Model Explorer
Depending on what you edit, you can u se one of these methods for opening
the Model Explorer:

• From the toolbar menu of the Stateflow ® Editor, Truth Table Editor, or

Embedded MATLAB™ Editor, click the Explore icon .

• In the Stateflow Editor or the Truth Table Editor, select Tools > Explore.

• In the Stateflow Editor, select View > Model Explorer.

• Right-click an empty area in the Sta teflow chart. From the resulting
pop-up menu, select Explore.

The Model Explorer appears similar to the following:
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The main window has two panes: a Model Hierarchy pane on the left
and a Contents pane on the right. When you open the Model Explorer, the
Stateflow object you are editing (chart, truth table, or Embedded MATLAB
function) is highlighted in the Model Hierarchy pane and its objects are
displayed in the Contents pane. In the preceding example, the Model
Explorer was opened from the Truth Table Editor for the truth table tt_func
in the Stateflow chart myChart .

The Model Hierarchy pane displays the element s of all loaded Simulink ®

models, which includes Stateflow charts, and their states, boxes, and
functions. A preceding plus (+) character for an object indicates that you
can expand the display of its child objects by double-clicking the entry or by
clicking the plus (+). A preceding minus (-) character for an object indicates
that it has no child objects.
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Clicking an entry in the Model Hierarchy pane selects that entry and
displays its child objects in the Contents pane. For convenience, a hypertext
link to the currently selected object in the Model Hierarchy pane is included
following the Contents of: label at the top of the Contents pane. Click
this link to display that object in its native editor. In the preceding example,
selecting the link

(Stateflow.TruthTable) myModel/myChart/myChart/tt_func

displays the truth table tt_func in the Truth Table Editor.

By default, the Model Explorer displa ys event and data child objects in the
Contents pane for the selected object in the Model Hierarchy pane. To
display additional or different child Stateflow objects in the Contents pane,
do the following:

1 From the Model Explorer, select View > List View Options.

2 In the submenu, select any or all of the following individual options:
States/Functions/Boxes/Etc., Transitions, Junctions, Events, or
Data.

To display all of the preceding St ateflow child objects, select All Stateflow
Objects.

Each type of object, whether in the Object Hierarchy or Contents pane,
appears with an adjacent icon. Objects that are subcharted (states, boxes, and
graphical functions) have their appearance altered by shading.

Object Icon
Icon for Subcharted
Object

Chart Not applicable

State

Box

Graphical Function

Truth Table Function Not applicable
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Object Icon
Icon for Subcharted
Object

Embedded MATLAB Function Not applicable

Data Not applicable

Event Not applicable

Target Not applicable

The display of child objects in the Contents pane includes properties for each
object, most of which are directly editable. You can also access the properties
dialog for an object from the Model Explorer. See “Setting Properties for
Stateflow ® Objects in the Model Explorer” on page 20-9 for more details.

Editing States or Charts in the Model Explorer
To edit a state or chart displayed in the Object Hierarchy pane of the Model
Explorer, do the following:

1 Right-click the object.

2 Select Edit from the resulting menu.

The selected object appears highli ghted in the Stateflow Editor in the
context of its parent.
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Adding Data and E vents in the Model Explorer
State, box, and f unction Stateflow ob jects can parent data and events. You
can also add data and events to the Simulink model to make them globally
available to all Stateflow objects in the model.

To add a data or a n event to a Stateflow object or to the Simulink model,
do the followin g:

1 In the Model Hierarchy pane of the Model Explorer, select a Simulink
model or a State flow object.

2 From the Add menu, select Data or Event.

A data or event is added to the Model Explorer Contents pane with the
default name data or event . If you continue adding more data, each new
data or event is named with an integer suffix ( data1 , event1 , data2 ,
event2 , and so on).

You can change the displayed properties for a data or event directly in
the Model Exp lorer. You can also access the complete list of properties
for a data or e vent from the Model Explorer. See “Setting Properties for
Stateflow ® Objects in the Model Explorer” on page 20-9.

For more deta iled examples of creating data and events in the Model Explorer,
see “Adding Events Using the Model Explorer” on page 8-3 and “Adding Data
Using the Mo del Explorer” on page 7-4.

Adding a Tar get in the Model Explorer
Targets are parented exclusively by a Simulink model. A simulation target
(sfun ) is automatically created when you add a Stateflow block to a Simulink
model. In t he Model Explorer, you can also ad d a code generation target to a
library mo del or multiple custom tar gets to a model as follows:

1 In the Mode l Explorer, in the left Model Hierarchy pane, select the
Simulink model to receive the target.

2 In the Model Explorer, select Add > Stateflow Target.
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The Contents pane of the Model Explorer disp lays the default simulation
target sfun and the new custom target with the default name untitled .

3 In the Contents pane, right-click the row of the custom target and select
Properties from the context menu.
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The Stateflow Custom Target dialog box appears.

4 In the S tateflow Custom Target dialog, enter the name of the custom target
and oth er properties. Click Apply.

The properties you enter for the target depend on the target type you
create. See “Targets You Can Build” on page 18-3 for more information.

Renaming Objects in the Model Explorer
Follow these steps to rename a state, b ox, function, data, event, or target
objects in the Model Explorer:

1 Right-click the object row in the Contents pane of the Model Explorer.
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A pop-up menu appears.

2 From the resulting pop-up menu, select Rename.

The name of the selected object appear s in a text edit box that overlays the
Name property for the object row.

3 Change the name of the target in the edit box and click outside the edit box.

You can also change the name of an object in the Model Explorer by changing
the value of its Name property. See “ Setting Properties for Stateflow ® Objects
in the Model Explorer” on page 20-9 for details.

Setting Properties for Stateflow ® Objects in the Model
Explorer
To change one of the displayed properties of a displayed object in the
Contents pane of the Model Explorer:

1 In the Contents pane, click anywhere in the row of the displayed object.

This highlights the row.

2 Click an individual entry for a property column in the highlighted row.

• For text properties, such as the Name property, a text editing field with
the current text value overlays the displayed value. Edit the field and
press the Return key or click anywhere outside the edit field to apply
the changes.

• For properties with enumerated entries, such as the Scope, Trigger, or
Type properties, select from a drop-down combo box that overlays the
displayed value.

• For Boolean properties (properties that are set on or off), check or
uncheck the box that appears in place of the displayed value.

To set all the properties for an object displayed in the Model Hierarchy or
Contents pane of the Model Explorer:

1 Right-click the object.
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2 Select Properties from the resulting menu.

The properties dialog for the object appears.

3 Edit the appropriate properties and select Apply or OK to apply the
changes.

To display the property dialog dynami cally for the selected object in the
Model Hierarchy or Contents pane of the Model Explorer:

1 Select View > Dialog View.

The property dialog for the selected o bject appears in the far right pane of
the Model Explorer.

Moving and Copying Data , Events, and Targets in
the Model Explorer

Note If you move an object to a level in the hierarchy that does not support the
Scope property for that object, the Scope is automatically changed to Local.

You can move data, event, or target objects to another parent by doing the
following:

1 Select the data, event, or target to move in the Contents pane of the
Model Explorer.

You can select a contiguous block of items by highlighting the first (or last)
item in the block and then using Shift+click for highlighting the last (or
first) item.

2 Click and drag the highlighted objects from the Contents pane to a new
location in the Model Hierarchy pane to change its parent.

A shadow copy of the selected objects accompanies the mouse cursor during
dragging. If no parent is chosen or the parent chosen is the current parent,
the mouse cursor changes to an X enclos ed in a circle, indicating an invalid
choice.
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You can accomplish the same outcome by cutting or copying the selected
events, data, and targets as follows:

1 Select the event, data, and targets to move in the Contents pane of the
Model Explorer.

2 In the Model Explorer, select Edit > Cut or Copy.

If you select Cut, the selected items are deleted and are copied to the
clipboard for copying elsewhere. If you select Copy, the selected items
are left unchanged.

You can also right-click a single selection and select Cut or Copy from the
resulting menu. The Model Explorer also uses the keyboard equivalents
of Ctrl+X (Cut) and Ctrl+C (Copy) on a computer running the UNIX ® or
Windows ® operating system.

3 Select a new parent machine, chart, or state in the Model Hierarchy
pane of the Model Explorer.

4 Select Edit > Paste. The cut items appear in the Contents pane of the
Model Explorer.

You can also paste the cut items by right-clicking an empty part of the
Contents pane of the Model Explorer and selecting Paste from the
resulting menu. The Model Explorer also uses the keyboard equivalent of
Ctrl+V (Paste) on a computer running the UNIX or Windows operating
system.

Changing the Port Order of Input and Output Data
and Events
Input data, output data, input events, and output events each have numerical
sequences of port index numbers. You can change the order of indexing for
event or data objects with a scope of Input to Simulink or Output to
Simulink in the Contents pane of the Model Explorer as follows:

1 Select one of the input or output data or event objects.

2 Click the Port property for the object.
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3 Enter a new value for the Port property for the object.

The remaining objects in the affected sequence are automatically assigned
a new value for their Port property.

Deleting Data, Events, and Targets in the Model
Explorer
Delete event, data, and target objects in the Contents pane of the Model
Explorer as follows:

1 Select the object.

2 Press the Delete key.

You can also select Cut from the Edit menu or Ctrl+X from the keyboard
to delete an object.
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Using the Stateflow ® Search & Replace Tool

In this section...

“Opening the Search & Replace Tool” on page 20-13

“Using Different Search Types” on page 20-16

“Specifying the Search Scope” on page 20-18

“Using the Search Button a nd View Area” on page 20-20

“Specifying the Replacement Text” on page 20-23

“Using the Replace Buttons” on page 20-25

“Search and Replace Messages” on page 20-26

Opening the Search & Replace Tool
To display the Search & Replace dialog box, do the following:

1 Open a Stateflow ® chart in the Stateflow Editor.

2 Select Tools > Search & Replace.
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The window name for the Search & Replace dialog box contains a full path
expression for the current Stateflow chart or machine in this form.

(object) Machine/Subsystem/Chart

The Search & Replace dialog box contains these fields:

• Search for

Enter search pattern text in the Search for text box. You can select the
interpretation of the s earch pattern with the Match case check box and
the Match options field (unlabeled and just to the right of the Search
in field).
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• Match case

If you select this check box, the search is case sensitive and the Search
& Replace tool finds only text match ing the search pattern exactly. See
“Match case (Case Sensitive)” on page 20-16.

• Replace with

Specify the text to replace the text found when you select any of the
Replace buttons ( Replace, Replace All, Replace All in This Object).
See “Using the Replace Buttons” on page 20-25.

• Preserve case

This option modifies replacement text. For an understanding of this option,
see “Replacing with Case Preservation” on page 20-24.

• Search in

By default, the Search & Replace tool searches for and replaces text only
within the current Stateflow chart that you are editing in the Stateflow
Editor. You can select to search the machine owning the current Stateflow
chart or any other loaded machine or chart by accessing this selection box.

• Match options

This field is unlabeled and just to the right of the Search in field. You can
modify the meaning of your search text by entering one of the selectable
search options. See “Using Different Search Types” on page 20-16.

• Object types and Field types

Under the Search in field are the selection boxes for Object types and
Field types. These selections further refin e your search and are described
below. By default, these boxes are h idden; only current selections are
displayed next to their titles.

Select the right-facing arrow button in front of the title to expand a
selection box and make changes.

Select the same button (this ti me with a left-facing arrow) to compress
the selection box to display the settings only, or, if you want, just leave
the box expanded.
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• Search and Replace buttons

These are described in “Using the Search Button and View Area” on page
20-20 and “Using the Replace Buttons” on page 20-25.

• View Area

The bottom half of the Search & Replace dialog box displays the result of
a search. This area is described i n “A Breakdown of the View Area” on
page 20-21.

Using Different Search Types
Enter search pattern text in the Search for text box. You can use one of the
following settings in the Match options field (unlabeled and just to the right
of the Search in field) to further refine the meaning of the text entered.

Contains word
Select this option to specify that the search pattern text is a whole word
expression used in a Stateflow chart with no specific beginning and end
delimiters. In other words, find th e specified text in any setting.

Suppose you have a state with this label and entry action.

Searching for the string fail with the Contains word option finds two
occurrences of the string fail .

Match case (Case Sensitive)
By selecting the Match case option, you enable case-sensitive searching.
In this case, the Search & Replace tool finds only text matching the search
pattern exactly.

By clearing the Match case option, you enable case-in sensitive searching.
In this case, search pattern characters entered in lower- or uppercase find
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matching text strings with the same sequence of base characters in lower- or
uppercase. For example, the search string "AnDrEw" finds the matching text
"andrew" or "Andrew" or "ANDREW".

Match whole word
Select this option to specify that the search pattern text in the Search for
field is a whole word expression used in a Stateflow chart with beginning
and end delimiters consisting of a blank space or a character that is not
alphanumeric and not an underscore character ( _).

In the previous example of a state named throt_fail , if Match whole
word is selected, searching for the string fail finds no text within that
state. However, searching for the string "fail_state" does find the text
"fail_state" as part of the second line since it is delimited by a space at the
beginning and a left square bracket ( [ ) at the end.

Regular expression
Set the Match options field to Regular expression to search for text that
varies from character to character within defined limits.

A regular expression is a string composed of letters, numbers, and special
symbols that defines one or more strin g candidates. Some characters have
special meaning when used in a regular expression, while other characters
are interpreted as themselves. Any other character appearing in a regular
expression is ordinary, unless a backslash ( \ ) character precedes it.

If the Match options field is set to Regular expression in the previous
example of a state named throt_fail , searching for the string "fail_"
matches the "fail_" string that is part of the second line, character for
character. Searching with the regular expression "\w*_" also finds the string
"fail_" . This search string uses the regular expression shorthand "\w" that
represents any part-of-word character, an asterisk ( * ) that represents any
number of any characters, and an underscore ( _) that represents itself.

For a list of regular expression meta cha racters, see “Regular Expressions” in
the MATLAB ® software documentation.
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Searching with Regular Expression Tokens
Within a regular expression, you use parentheses to group characters or
expressions. For example, the regular expression "and(y|rew)" matches the
text "andy" or "andrew" . Parentheses also have the side effect of remembering
what they match so that you can recall and reuse the found text with a special
variable in the Search for field. These variables are called tokens.

For details on how to use tokens in the Search & Replace tool, see “Tokens” in
the MATLAB software documentation.

You can also use tokens in the Replace with field. See “Replacing with
Tokens” on page 20-24 for a descriptio n of using regular expression tokens
for replacing.

Preserve case
This option modifies replacement text and not search text. For details, see
“Replacing with Case Pres ervation” on page 20-24.

Specifying the Search Scope
You specify the scope of your search by selecting from the field regions
discussed in the topics that follow.

Search in
You can select a whole machine or individual Stateflow chart for searching
in the Search in field. By default, the current Stateflow chart in which you
entered the Search & Replace tool is selected.

To select a machine, follow these steps:

1 Select the down arrow of the Search in field.

A list of the currently loaded machin es appears with the current machine
expanded to reveal its Stateflow charts.

2 Select a machine.

To select a Stateflow chart for searching, follow these steps:
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1 Select the down arrow of the Search in field again.

This list contains the previously selected machine expanded to reveal its
Stateflow charts.

2 Select a chart from the expanded machine.

Object Types
Limit your search to text matches in th e selected object types by following
these steps:

1 Expand the Object types field.

2 Select one or more object types.

Field Types
Limit your search to text matches for the specified fields by following these
steps:

1 Expand the Field types field.

2 Select one or more field types

Available field types are as follows.

Names. Machines, charts, data, and events have valid Name fields. States
have a Name defined as the top line of their labels. You can search and
replace text belonging to the Name field of a state in this sense. However, if
the Search & Replace tool fin ds matching text in a state’s Name field, the rest
of the label is subject to later searches for the specified text whether or not
the label is chosen as a search target.

Note The Name field of machines and charts is an invalid target for the
Search & Replace tool. Use the Simulink ® model window to change the names
of machines and charts.

Labels. Only states and transitions have labels.
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Descriptions. All objects have searchable Description fields.

Document links. All objects have searchable Link fields.

Custom code. Only target objects contain custom code.

Using the Search Button and View Area
This topic contains the following subtopics:

• “A Breakdown of the View Area” on page 20-21

• “The Search Order” on page 20-22

• “Additional Display Options” on page 20-23

Click Search to initiate a single-search operation. If an object match is made,
its text fields are displayed in the Viewer pane in the middle of the Search &
Replace dialog. If the object is graphical (s tate, transition, junction, chart), the
matching object appears highlighted in a Portal pane below the Viewer pane.
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A Breakdown of the View Area
The view area of the Search & Replace dialog box displays matching text and
its containing object, if viewable. I n the previous example, taken from the
fuelsys demo model, a search for the word "speed" finds the Description field
for the state Speed. The resulting view area display consists of these parts:

Icon. Displays an icon appropriate to the ob ject containing the matching text.
These icons are identical to the icons in the Model Explorer that represent
Stateflow objects displa yed in “Viewing Stateflow ® Objects in the Model
Explorer” on page 20-2.

Full Path Name of Containing Object. This area displays the full path
name for the object that contains the matching text:

(<type>) <machine name>/<subsystem>/<chart
name>.[p 1]...[p n].<object name> (<id>)
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where p1 through pn denote the object’s parent states.

To display the object, cli ck the mouse once on the full path name of the object.
If the object is a graphical member of a Stateflow chart, it appears in the
Stateflow Editor. Otherwise, it appears as a member of its Stateflow chart
in the Model Explorer.

Viewer. This area displays the matching text as a highlighted part of all
search-qualified text fields for the owner object. If other occurrences exist in
these fields, they too are highli ghted, but in lighter shades.

To invoke the properties dialog box for the owner object, double-click
anywhere in the Viewer pane.

Portal. This area contains a graphic displa y of the object that contains the
matching text. That object appears highlighted.

To display the highlighted object in the Stateflow Editor, double-click
anywhere in the Portal pane.

The Search Order
If you specify an entire machine as your search scope in the Search in field,
the Search & Replace tool starts searching at the beginning of the first chart
of the model, regardless of the Stateflow chart that appears in the Stateflow
Editor when you begin your search. After searching the first chart, the Search
& Replace tool continues searching each chart in model order until all charts
for the model have been searched.

If you specify a Stateflow chart as you r search scope, the Search & Replace
tool begins searching at the beginning of the chart. The Search & Replace tool
continues searching the chart until all the chart objects have been searched.

The search order when searching an individual chart for matching text
is equivalent to a depth-first search of the Model Explorer. Starting at
the highest level of the chart, the Model Explorer hierarchy is traversed
downward from parent to child until an object with no child is encountered.
At this point, the hierarchy is traver sed upward through objects already
searched until an unsearched sibling is found and the process repeats.
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Additional Display Options
Right-click anywhere in the Search & Replace dialog to display a menu with
these selections.

Selection Result

Show portal A toggle switch that hides or displays the portal.

Edit Displays the object with matching text in the
Stateflow Editor. Applie s to states, junctions,
transitions, and charts.

Explore Displays the object with matching text in the Model
Explorer. Applies to states, data, events, machines,
charts, and targets.

Properties Displays the properties dialog box for the object with
matching text.

Note The Edit, Explore, and Properties selections are available only after
a successful search.

If the portal is not visible, you can select the Show portal option to display
it. You can also click and drag the bord er between the viewer and the portal
(the cursor turns to a vertical double arrow), which resides just above the
bottom boundary of the Search & Replace dialog. Moving this border allows
you to exchange area between the portal and the viewer. If you click and drag
the border with the left mouse button, the graphic display resizes after you
reposition the border. If you click an d drag the border with the right mouse
button, the graphic display continuou sly resizes as you move the border.

Specifying the Replacement Text
The Search & Replace tool replace s matching text with the exact
(case-sensitive) text you entered in the Replace With field unless you choose
one of the dynamic replacement options described below.
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Replacing with Case Preservation
If you choose the Case Preservation option, matching text is replaced based
on one of these conditions:

• Whisper

Matching text has only lowercase characters. Matching text is replaced
entirely with the lowercase equivale nt of all replacement characters. For
example, if the replacement text is "ANDREW", the matching text "bill" is
replaced by "andrew" .

• Shout

Matching text has only uppercase char acters. Matching text is replaced
entirely with the uppercase equivale nt of all replacement characters. For
example, if the replacement text is "Andrew" , the matching text "BILL" is
replaced by "ANDREW".

• Proper

Matching text has uppercase characters in the first character position of
each word. Matching text is replace d entirely with the case equivalent
of all replacement characters. For example, if the replacement text is
"andrew johnson" , the matching text "Bill Monroe" is replaced by
"Andrew Johnson" .

• Sentence

Matching text has an uppercase charac ter in the first character position of
a sentence with all other sentence cha racters in lowercase. Matching text
is replaced in like manner, with the first character of the sentence given an
uppercase equivalent and all other sentence characters set to lowercase.
For example, if the replacement text is "andrew is tall." , the matching
text "Bill is tall." is replaced by "Andrew is tall." .

Replacing with Tokens
Within a regular expression, you use parentheses to group characters or
expressions. For example, the regular expression "and(y|rew)" matches the
text "andy" or "andrew" . Parentheses also have the side effect of remembering
what they matched so that you can recall and reuse the matching text with a
special variable in the Replace with field. These variables are called tokens.
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Tokens outside the search pattern have the form $1,$2,...,$n (n<17) and
are assigned left to right from parenthet ical expressions in the search string.

For example, the search pattern "(\w*)_(\w*)" finds all word expressions
with a single underscore separating the left and right sides of the word. If you
specify an accompanying replacement string of "$2_$1" , you can replace all
these expressions by their reve rse expression with a single Replace all. For
example, the expression "Bill_Jones" is replaced by "Jones_Bill" , and the
expression "fuel_system" is replaced by "system_fuel" .

For details on how to use tokens in regular expression search patterns, see
“Regular Expressions” in the MA TLAB software documentation.

Using the Replace Buttons
You can activate the replace buttons ( Replace, Replace All, Replace All in
This Object) only after a search that finds text.

Replace
When you select the Replace button, the current instance of text matching
the text string in the Search for field is replaced by the text string you
entered in the Replace with field. The Search & Replace tool then searches
for the next occurrence of the Search for text string.

Replace All
When you select the Replace All button, all instances of text matching the
Search for field are replaced by the text string entered in the Replace
with field. Replacement starts at the point of invocation to the end of the
current Stateflow chart. If you initially skip through some search matches
with the Search button, these matches are also skipped when you select the
Replace All button.

If the search scope is set to Search Whole Machine, then after finishing
the current Stateflow chart, replacement continues to the completion of all
other charts in your Simulink model.
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Replace All in This Object
When you select the Replace All in This Object button, all instances of
text matching the Search for field are replaced by text you entered in the
Replace with field everywhere in the current Stateflow object regardless
of previous searches.

Search and Replace Messages
Informational and warning messages appear in the Full Path Name
Containing Object field along with a defining icon.

– Information al Messages

– Warnings

The followin g messages are informational:

Please specify a search string
A search was attempted without a searc h string specified.

No Matches Found
No matches exist in the selected search scope.

Search Completed
No more match es exist in the selected search scope.

The followi ng warnings refer to invalid condit ions for searching or replacing:

Invalid option set
The object t ypes and field types that you selected are incompatible. For
example, a search on Custom Code fields without selecting target objects is
invalid.
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Match object not currently editable
The matching object is not editable by replacement due to one of these
problems.

Problem Solution

A simulation is running. Stop the simulation.

You are editing a locked library
block.

Unlock the library.

The current object or its parent has
been manually locked.

Unlock the object or its parent.

The following warnings appear if the Search & Replace tool must refind the
object and its matching text field. If th e original matching object is deleted
or changed before an ensuing search or replacement, the Search & Replace
tool cannot continue.

Search object not found
If you search for text, find it, and then delete the containing object, this
warning appears if you continue to search.

Match object not found
If you search for text, find it, and then delete the containing object, this
warning appears if you p erform a replacement.

Match not found
If you search for text, find it, and then change the object containing the text,
this warning appears if you perform a replacement.

Search string changed
If you search for text, find it, and then change the Search For field, this
warning appears if you p erform a replacement.
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Finding Stateflow ® Objects

In this section...

“Types of Finder Tools” on page 20-28

“Opening Stateflow ® Finder” on page 20-28

“Using Stateflow ® Finder” on page 20-29

“Finder Display Area” on page 20-32

Types of Finder Tools
Two types of finder tools can search for Stateflow ® objects.

• On most platforms, when you select Tools > Find in the Stateflow Editor,
the Simulink ® Find dialog appears. You can use this tool to search for
Simulink and Stateflow objects that m eet criteria you specify. Any objects
that meet your criteria appear in the s earch results pane of the dialog.

For details, see “The Finder” in the Simulink software documentation.

• On platforms that do not support the Simulink Find tool, the original
Stateflow Finder appears when you select Tools > Find in the Stateflow
Editor.

Note See the Simulink Release Notes in the online documentation for a
list of platforms on which the Simulink Find tool is not available.

Opening Stateflow ® Finder
On platforms that do not support the Simulink Find tool, access the Stateflow
Finder dialog box with one of these methods:

• Select Tools > Find in the Stateflow Editor.

• Select Edit > Find in the Simulink model window.

The Finder operates on the machine whose name appears in the window
title area of the Finder dialog.
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Using Stateflow ® Finder

• “String Criteria” on page 20-29

• “Search Method” on page 20-30

• “Object Type” on page 20-31

• “Find Button” on page 20-31

• “Matches” on page 20-31

• “Refine Button” on page 20-31

• “Search History” on page 20-31

• “Clear Button” on page 20-32

• “Close Button” on page 20-32

• “Help Button” on page 20-32

String Criteria
You specify the string by entering the text to search for in the Look for text
box. The search is case sensitive. All text fields are included in the search by
default. Alternatively, you can search in specific text fields by using the Look
in list box to choose one of these options:

Any. Search the state and transition label s, object names, and descriptions of
the specified object types for the string specified in the Look for field.

Label. Search the state and transition labels of the specified object types for
the string specified in the Look for field.
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Name. Search the Name fields of the specified object types for the string
specified in the Look for field.

Description. Search the Description fields of the specified object types for
the string specified in the Look for field.

Document Link. Search the Document link fields of the specified object
types for the string specified in the Look for field.

Custom Code. Search custom code for the string specified in the Look for
field.

Search Method
By default the Search Method is Normal/Wildcard (regular expression).
Alternatively, you can click the Exact Word match option if you are
searching for a particular sequence of one or more words.

A regular expression is a string composed of letters, numbers, and special
symbols that define one or more strings. Some characters have special
meaning when used in a regular expre ssion, while other characters are
interpreted as themselves. Any oth er character appearing in a regular
expression is ordinary, unless a \ precedes it.

Special characters supported by Stateflow Finder are as follows.

Character Description

^ Start of string

$ End of string

. Any charact er

\ Quote the ne xt character

* Match zero or more

+ Match one or more

[ ] Set of char acters
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Object Type
Specify the object types to search by t oggling the check boxes. A check mark
indicates that the object is included in the search criteria. By default, all
object types are included in the search criteria. Object Types include:

• States

• Transitions

• Junctions

• Events

• Data

• Targets

Find Button
Click the Find button to initiate the search o peration. The results appear in
the display area.

Matches
The Matches field displays the number of objects that match the specified
search criteria.

Refine Button
After the results of a search appear, ent er additional search criteria and click
Refine to narrow the previously entered s earch criteria. An ampersand (&)
is prefixed to the search criteria in the Search History field to indicate a
logical AND with any previousl y specified search criteria.

Search History
The Search History text box displays the current search criteria. Click the
pull-down list to display search refinements. An ampersand is prefixed to the
search criteria to indicate a logical AND with any previously specified search
criteria. You can undo a previously spec ified search refinement by selecting
a previous entry in the search history. By changing the Search History
selection, you force the Finder to use the specified criteria as the current,
most refined, search output.
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Clear Button
Click Clear to clear any previously specified search criteria. By doing so, you
remove the results and reset the searc h criteria to the default settings.

Close Button
Click Close to close the Finder.

Help Button
Click Help to display the Stateflow software documentation in an HTML
browser window.

Finder Display Area
The Stateflow Finder display a rea appears similar to this.

The display area shows matching entries with these columns:

Field Descripti on

Type The object type appears in this field. States with exclusive
(OR) decomposition are followed by an (O). States with
parallel (AND) decomposition are followed by (A).

Label The string label of the object appears in this field.

Chart The title o f the Stateflow chart appears in this field.

20-32



Finding Stateflow® Objects

Field Description

Parent The parent of this object in the hierarchy.

Source Source object of a transition.

Destination Destination object of a transition.

All fields are truncated to m aintain column widths. The Parent, Source, and
Destination fields are truncated from the left so that the name at the end of
the hierarchy is readable. The entire field contents, including the truncated
portion, are used for resorting.

Each field label is also a button. Click the button to have the list sorted based
on that field. If the same button is pre ssed twice in a row, the sort ordering
is reversed.

You can resize the Finder vertically t o display more output rows, but you
cannot expand it horizontally.

Click a graphical entry to highlight that object in the Stateflow Editor.
Double-click an entry to invoke the Pr operties dialog box for that object.
Right-click the entry to display a men u that allows you to explore, edit, or
display the properties of that entry.

Representing Hierarchy
The Stateflow Finder shows Parent, Source, and Destination fields to
represent the hierarchy. The Stateflow chart is the root of the hierarchy and
is represented by the / character. Each l evel in the hierarchy is delimited by a
period (.) character. The Source and Destination fields use the combination
of the tilde (~) and the period (.) characters to denote that the state listed
is relative to the Parent hierarchy.

Using the following Stateflow chart as a n example, what are the values for the
Parent, Source, and Destination fields for the transition from A2a to A2b?
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The A2a to A2b transition is within state A2. The parent of state A2 is state
A, and the parent of state A is the Stateflow chart its elf. The notation for the
parent of state A2a is /A.A2 . State A2a is the transition source and state A2b
is the destination. These states are at the same level in the hierarchy. The
relative hierarchy notation for the source of the transition is ~.A2a . The full
path is /A.A2.A2a . The relative hierarchy notation for the destination of the
transition is ~.A2b . The full path is /A.A2.A2b .
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A Semantic Rules Summary

Entering a Chart

The set of default flow paths is executed (see “Executing a Set of Flow
Graphs” on page A-3). If this does not c ause a state entry and the chart has
parallel decomposition, then each parallel state is entered (see “Entering a
State” on page A-2).

If executing the default flow paths does not cause state entry, a state
inconsistency error occurs.

Executing an A ctive Chart

If the chart ha s no states, each execution is equ ivalent to initializing a chart.
Otherwise, t he active children are executed. Parallel states are executed in
the same order that they are entered.

Entering a State

1 If the parent of the state is not active , perform steps 1-4 for the parent.

2 If this is a p arallel state, check that all siblings with a higher (i.e., earlier)
entry order are active. If not, perform all entry steps for these states first.

3 Mark the state active.

4 Perform any entry actions.

5 Enter chil dren, if needed:

a If the state contains a history junction and there was an active child
of this sta te at some point after the most recent chart initialization,
perform th e entry actions for that child. Otherwise, execute the default
flow paths for the state.

b If this sta te has parallel decomposition, i.e ., has children that are parallel
states, perform entry steps 1-5 for each state according to its entry order.
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6 If this is a parallel state, perform all e ntry actions for the sibling state next
in entry order if one exists.

7 If the transition path parent is not the same as the parent of the current
state, perform entry steps 6 and 7 for the immediate parent of this state.

Executing an Active State

1 The set of outer flow graphs is executed (see “Executing a Set of Flow
Graphs” on page A-3). If this causes a s tate transition, execution stops.
(Note that this step is never required for parallel states.)

2 During actions and valid on-event actions are performed.

3 The set of inner flow graphs is execu ted. If this does not cause a state
transition, the active children are e xecuted, starting at step 1. Parallel
states are executed in the same order that they are entered.

Exiting an Active State

1 If this is a parallel state, make sure tha t all sibling states that were entered
after this state have already been exi ted. Otherwise, perform all exiting
steps on those sibling states.

2 If there are any active children, perform the exit steps on these states in
the reverse order they were entered.

3 Perform any exit actions.

4 Mark the state as inactive.

Executing a Set of Flow Graphs

Flow graphs are executed by starting at step 1 below with a set of starting
transitions. The starting transitions for inner flow graphs are all transition
segments that originate on the respec tive state and reside entirely within
that state. The starting transitions for outer flow graphs are all transition
segments that originate on the respective state but reside at least partially
outside that state. The starting transi tions for default flow graphs are all
default transition segments that have starting points with the same parent:
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1 A set of transition segments is ordered.

2 While there are remaining segments to te st, a segment is tested for validity.
If the segment is invalid, move to the n ext segment in order. If the segment
is valid, execution depends on the destination:

States

a No more transition segments are tes ted and a transition path is formed
by backing up and including the transition segment from each preceding
junction until the respective starting transition.

b The states that are the immediate children of the parent of the transition
path are exited (see “Exiting a n Active State” on page A-3).

c The transition action from the final transition segment is executed.

d The destination state is entered (see “Entering a State” on page A-2).

Junctions with no outgoing transition segments

Testing stops without any states being exited or entered.

Junctions with outgoing transition segments

Step 1 is repeated with the set of outgoing segments from the junction.

3 After testing all outgoing transition segments at a junction, back up the
incoming transition segment that brought you to the junction and continue
at step 2, starting with the next transition segment after the back up
segment. The set of flow graphs is done executing when all starting
transitions have been tested.

Executing an Event Broadcast

Output edge trigger event execution is equivalent to changing the value of an
output data value. All other events have the following execution:

1 If the receiver of the event is active, then it is executed (see “Executing an
Active Chart” on page A-2 and “Executing an Active State” on page A-3).
(The event receiver is the parent of the event unless the event was explicitly
directed to a receiver using the send() function.)
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Executing an Event Broadcast

If the receiver of the event is not active, nothing happens.

2 After broadcasting the event, the bro adcaster performs early return logic
based on the type of action state ment that caused the event.

Action Type Early Return Logic

State Entry If the state is no longer active at the end of the event
broadcast, any remaining steps in entering a state are
not performed.

State Exit If the state is no longer active at the end of the event
broadcast, any remaining exit actions and steps in
state transitioning are not performed.

State During If the state is no longer active at the end of the event
broadcast, any remaining steps in executing an active
state are not performed.

Condition If the origin state of the inner or outer flow graph or
parent state of the default flow graph is no longer
active at the end of the event broadcast, the remaining
steps in the execution of the set of flow graphs are not
performed.

Transition If the parent of the transition path is not active or
if that parent has an active child, the remaining
transition actions and state entry are not performed.
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Glossary

Glossary

actions
Actions take place as part of Stateflow ® chart execution. The action
can be executed as part of a transition from one state to another,
or depending on the activity status of a state. Transitions can have
condition actions and trans ition actions. For example,

Action language defines the categories of actions you can specify and
their associated notations. For example, states can have entry , during ,
exit , and on event_name actions as shown by the following:

An action can be a function call , a broadcast event, a variable
assignment, and so on. For more in formation on actions and action
language, see Chapter 9, “Using Actions in Stateflow ® Charts”.

API (application programming interface)
Format you can use to access and communicate with an application
program from a programming or script environment.
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Glossary

box
Graphical object that groups together other graphical objects in your
chart. For details about how a box affects chart execution, see “Using
Boxes to Extend Charts” on page 6-43.

Name Icon in the
Stateflow® Editor

Description

Box Graphically organizes
states, transitions,
and other graphical
objects in your chart.

chart instance
Link from a Stateflow ® model to a chart stored in a Simulink ® library. A
chart in a library can have many chart instances. Updating the chart in
the library automatically updates all the instances of that chart.

condition
Boolean expression to specify that a transition occurs if the specified
expression is true. For example,

In the preceding example, assume that the state second is active. If an
event occurs and the value for the data speed is greater than the value
of the data threshold , the transition between states second and third
is taken, and the state third becomes active.

connective junction
Illustrates decision points in the system. A connective junction is a
graphical object that simplifies Stateflow ® chart representations and
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